SCDJWS Study Guide

SCDJWS Study Guide

JavaRanch.com edition - join The Most Friendly Java Community now !

Copyright © 2005, 2006 MZ
Redistribution of this document is permitted as long as it is not used for profits.

March 2006

|Revision History

[Revision 0.8 |o Mar 2006 Mz
|Min0r corrections of code sample in Chapter 5, section 1 and Handler class package name in Chapter 10 (thanks to Joyce Lee).
|Revision 0.7 |21 Feb 2006 MZ

Minor corrections in Chapter 4, section 1 (Explain the service description model, client connection types, interaction modes, transport
mechanisms/protocols, and endpoint types as they relate to JAX-RPC): Error in the stateless session bean implementation class (thanks to Joyce
Lee). Typo in the deployment descriptor.

|Revision 0.6 |13 Feb 2006 M

Minor correction in Chapter 1, section 2 (Describe the use of XML Schema in J2EE Web services) - the "name™" attribute was missing in simple type
extension example. Thanks to Joyce Lee !

H

[Revision 0.5 [15 Mar 2005 Mz
|Added JAX-RPC SEI default session timeout explanation.

|Revision 0.4 |14 Mar 2005 ,W
|Added ‘EntityResolver' description and code example.

[Revision 0.3 [19 Dec 2004 [mz

Corrected 2 typos. In namespaces chapter: double quote was used instead of colon. In schema chapter: typo in namespace prefix in
"order_request" sample schema.

|Revision 0.2 |16 Nov 2004 ,E
|Minor typo correction.

|Revision 0.1 |7 Apr 2004 ,E
|Chapter 1 updates.

[Revision 0.0 [17 Mar 2004 Mz

|initia| release.

Abstract
The purpose of this document is to help in preparation for exam CX-310-220 (Sun Certified Developer for Java Web Services).

This document should NOT be used as the only study material for SCDJWS (Sun Certified Developer for Java Web Services) Test. It does
NOT covers all objective topics. | tried to make this document as much accurate as possible, but if you find any error, please let me
know.

Table of Contents

Preface
I. Exam Objectives
1. XML Web Service Standards
Given XML documents, schemas, and fragments determine whether their syntax and form are correct (according to W3C
schema) and whether they conform to the WS-1 Basic Profile 1.0a.
Describe the use of XML Schema in J2EE Web services.
Describe the use of nhamespaces in an XML document.
2. SOAP 1.1 Web Service Standards
List and describe the encoding types used in a SOAP message.
Describe how SOAP message header blocks are used and processed.
Describe the function of each element contained in a SOAP message, the SOAP binding to HTTP, and how to represent
faults that occur when processing a SOAP message.
Create a SOAP message that contains an attachment.
Describe the restrictions placed on the use of SOAP by the WS-1 Basic Profile 1.0a.
Describe the function of SOAP in a Web service interaction and the advantages and disadvantages of using SOAP
messages.
3. Describing and Publishing (WSDL and UDDI)
Explain the use of WSDL in Web services, including a description of WSDL's basic elements, binding mechanisms and the

file:///ID|/workspace/wsd-guide/wsd-guide.html (1 of 171) [14.03.2006 14:39:44]

http://saloon.javaranch.com/cgi-bin/ubb/ultimatebb.cgi?category=7

SCDJWS Study Guide

basic WSDL operation types as limited by the WS-I Basic Profile 1.0a.
Describe how W3C XML Schema is used as a typing mechanism in WSDL 1.1.
Describe the use of UDDI data structures. Consider the requirements imposed on UDDI by the WS-I Basic Profile 1.0a.
Describe the basic functions provided by the UDDI Publish and Inquiry APIs to interact with a UDDI business registry.

4. JAX-RPC
Explain the service description model, client connection types, interaction modes, transport mechanisms/protocols, and
endpoint types as they relate to JAX-RPC.
Given a set of requirements for a Web service, such as transactional needs, and security requirements, design and develop
Web service applications that use servlet-based endpoints and EJB based endpoints.
Given an set of requirements, design and develop a Web sevice client, such as a J2EE client and a stand-alone Java client,
using the appropriate JAX-RPC client connection style.
Given a set of requirements, develop and configure a Web service client that accesses a stateful Web service.
Explain the advantages and disadvantages of a WSDL to Java vs. a Java to WSDL development approach.
Describe the advantages and disadvantages of web service applications that use either synchronous/request response, one-
way RPC, or non-blocking RPC invocation modes.
Use the JAX-RPC Handler API to create a SOAP message handler, describe the function of a handler chain, and describe
the role of SAAJ when creating a message handler.

5. SOAP and XML Processing APIs (JAXP, JAXB, and SAAJ)
Describe the functions and capabilities of the APIs included within JAXP.
Given a scenario, select the proper mechanism for parsing and processing the information in an XML document.
Describe the functions and capabilities of JAXB, including the JAXB process flow, such as XML-to-Java and Java-to-XML,
and the binding and validation mechanisms provided by JAXB.
Use the SAAJ APIs to create and manipulate a SOAP message.

6. JAXR
Describe the function of JAXR in Web service architectural model, the two basic levels of business registry functionality
supported by JAXR, and the function of the basic JAXR business objects and how they map to the UDDI data structures.
Use JAXR to connect to a UDDI business registry, execute queries to locate services that meet specific requirements, and
publish or update information about a business service.

7. J2EE Web Services
Identify the characteristics of and the services and APIs included in the J2EE platform.
Explain the benefits of using the J2EE platform for creating and deploying Web service applications.
Describe the functions and capabilities of the JAXP, DOM, SAX, JAXR, JAX-RPC, and SAAJ in the J2EE platform.
Describe the role of the WS-I Basic Profile when designing J2EE Web services.

8. Security
Explain basic security mechanisms including: transport level security, such as basic and mutual authentication and SSL,
message level security, XML encryption, XML Digital Signature, and federated identity and trust.
Identify the purpose and benefits of Web services security oriented initiatives and standards such as Username Token
Profile, SAML, XACML, XKMS, WS-Security, and the Liberty Project.
Given a scenario, implement J2EE based web service web-tier and/or EJB-tier basic security mechanisms, such as mutual
authentication, SSL, and access control.
Describe factors that impact the security requirements of a Web service, such as the relationship between the client and
service provider, the type of data being exchanged, the message format, and the transport mechanism.

9. Developing Web Services
Describe the steps required to configure, package, and deploy J2EE Web services and service clients, including a
description of the packaging formats, such as .ear, .war, .jar, deployment descriptor settings, the associated Web Services
description file, RPC mapping files, and service reference elements used for EJB and servlet endpoints.
Given a set of requirements, develop code to process XML files using the SAX, DOM, XSLT, and JAXB APIs.
Given an XML schema for a document style Web service create a WSDL file that describes the service and generate a
service implementation.
Given a set of requirements, develop code to create an XML-based, document style, Web service using the JAX-RPC APIs.
Implement a SOAP logging mechanism for testing and debugging a Web Service application using J2EE Web Service APlIs.
Given a set of requirements, develop code to handle system and service exceptions and faults received by a Web services
client.

10. General Design and Architecture
Describe the characteristics of a service oriented architecture and how Web Services fits to this model.
Given a scenario, design a J2EE service using the Business Delegate, Service Locator, and/or Proxy client-side design
patterns and the Adapter, Command, Web Service Broker, and/or Facade server-side patterns.
Describe alternatives for dealing with issues that impact the quality of service provided by a Web service and methods to
improve the system reliability, maintainability, security, and performance of a service.
Describe how to handle the various types of return values, faults, errors, and exceptions that can occur during a Web
service interaction.
Describe the role that Web services play when integrating data, application functions, or business processes in a J2EE
application.
Describe how to design a stateless Web service that exposes the functionality of a stateful business process.

11. Endpoint Design and Architecture
Given a scenario, design Web service applications using information models that are either procedure-style or document-
style.
Describe the function of the service interaction and processing layers in a Web service.
Describe the tasks performed by each phase of an XML-based, document oriented, Web service application, including the
consumption, business processing, and production phases.
Design a Web service for an asynchronous, document-style process and describe how to refactor a Web service from a

file:///ID|/workspace/wsd-guide/wsd-guide.html (2 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

synchronous to an asynchronous model.
Describe how the characteristics, such as resource utilization, conversational capabilities, and operational modes, of the
various types of Web service clients impact the design of a Web service or determine the type of client that might interact
with a particular service.
I1. Appendixes

A. First Appendix
SAAJ API
Second Section
Third Section

Bibliography

Preface

If you believe you have found an error in the SCDJWS 1.4 Study Guide or have a suggestion to improve it, please send an e-mail to me.
Indicate the topic and page URL.

Exam Objectives

Chapter 1. XML Web Service Standards

Given XML documents, schemas, and fragments determine whether their syntax and form are correct (according to
W3C schema) and whether they conform to the WS-1 Basic Profile 1.0a.

BP 1.0 - Service Description (WSDL) - Document Structure.

A DESCRIPTION MUST only use the WSDL "import" statement to import another WSDL description.

To import XML Schema Definitions, a DESCRIPTION MUST use the XML Schema "i nport " statement.

A DESCRIPTION MUST use the XML Schema "i nport " statement only within the xsd: schena element of the t ypes section.

A DESCRIPTION MUST NOT use the XML Schema "i nport " statement to import a Schema from any document whose root element is not
"schema" from the namespace "http://www.w3.0rg/2001/XMLSchema".

An XML Schema directly or indirectly imported by a DESCRIPTION MUST use either UTF-8 or UTF-16 encoding.

An XML Schema directly or indirectly imported by a DESCRIPTION MUST use version 1.0 of the eXtensible Markup Language W3C
Recommendation.

CORRECT:

<defi ni ti ons name="St ockQuot e"
t ar get Nanespace="ht t p: / / exanpl e. coni st ockquot e/ defi ni ti ons" >
<i nport nanmespace="http://exanpl e. com st ockquot e/ defi ni ti ons"
| ocati on="http://exanpl e. com st ockquot e/ st ockquot e. wsdl "/ >
<message nanme="GCet Last TradePri cel nput">
<part nanme="body" elenment="..."/>
</ nessage>

</ definitions>

CORRECT:

<defi ni ti ons nane="St ockQuot e"
t ar get Nanmespace="htt p: // exanpl e. com st ockquot e/ "
xm ns: xsd1="htt p:// exanpl e. conl st ockquot e/ schenas"

file:///ID|/workspace/wsd-guide/wsd-guide.html (3 of 171) [14.03.2006 14:39:44]

mailto:java-cert@mail.ru?subject=SCDJWS 1.4 Study Guide Comment

SCDJWS Study Guide

INCORRECT (imports not "wsdl" document):

A DESCRIPTION MUST specify a non-empty location attri but e on the wsdl : i mport element.

When they appear in a DESCRIPTION, wsdl : i nport elements MUST precede all other elements from the WSDL namespace except
wsdl : docunent ati on.

When they appear in a DESCRIPTION, wsdl : t ypes elements MUST precede all other elements from the WSDL namespace except
wsdl : docunent ati on and wsdl : i nport.

CORRECT:

CORRECT (wsdl : t ypes before all other elements):

file:///D|/workspace/wsd-guide/wsd-guide.html (4 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

INCORRECT (wrong position of wsdl : t ypes element):

A DESCRIPTION MUST use version 1.0 of the eXtensible Markup Language W3C Recommendation.

DESCRIPTION MUST use either UTF-8 or UTF-16 encoding.

The t ar get Nanespace attribute on the wsdl : defi ni ti ons element of a description that is being imported MUST have same the value as
the namespace attribute on the wsdl : i nport element in the importing DESCRIPTION.

A document-literal binding in a DESCRIPTION MUST, in each of its soapbi nd: body element(s), have at most one part listed in the parts
attribute, if the part s attribute is specified.

If a document-literal binding in a DESCRIPTION does not specify the part s attribute on a soapbi nd: body element, the corresponding
abstract wsdl : nessage MUST define zero or one wsdl : parts.

A wsdl : bi ndi ng in a DESCRIPTION MAY contain soapbi nd: body element(s) that specify that zero parts form the soap: Body.

An rpc-literal binding in a DESCRIPTION MUST refer, in its soapbi nd: body element(s), only to wsdl : part element(s) that have been
defined using the t ype attribute.

A MESSAGE described with an rpc-literal binding MUST NOT have the xsi : ni | attribute with a value of "1" or "t r ue" on the part
accessors.

A wsdl : message in a DESCRIPTION MAY contain wsdl : parts that use the elements attribute provided those wsdl : parts are not referred
to by a soapbi nd: body in an rpc-literal binding.

A document-literal binding in a DESCRIPTION MUST refer, in each of its soapbi nd: body element(s), only to wsdl : part element(s) that
have been defined using the el ement attribute.

A binding in a DESCRIPTION MAY contain soapbi nd: header element(s) that refer to wsdl : part s in the same wsdl : message that are
referred to by its soapbi nd: body element(s).

file:///D|/workspace/wsd-guide/wsd-guide.html (5 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

A wsdl : bi ndi ng in a DESCRIPTION MUST refer, in each of its soapbi nd: header, soapbi nd: header f aul t and soapbi nd: faul t elements,
only to wsdl : part element(s) that have been defined using the el enent attribute.

A wsdl : bi ndi ng in a DESCRIPTION SHOULD bind every wsdl : part of a wsdl : message in the wsdl : port Type to which it refers to one of
soapbi nd: body, soapbi nd: header, soapbi nd: faul t or soapbi nd: headerfaul t.

A wsdl : nessage in a DESCRIPTION containing a wsdl : part that uses the el ement attribute MUST refer, in that attribute, to a global
element declaration.

CORRECT:

<nessage nane="Cet Tr adePri cel nput ">
<part nane="body" el enent="tns: Subscri beToQuot es"/>
</ nessage>

INCORRECT (xsd: stri ng is not a global element):

<message name="Get TradePri cel nput ">
<part nanme="ti cker Synbol " el ement ="xsd: string"/>
<part nane="tine" el enent="xsd:tinelnstant"/>

</ nessage>

INCORRECT (xsd: stri ng is not a global element):

<message nanme="Get TradePri cel nput ">
<part nanme="ti cker Synbol " el ement ="xsd: string"/>
</ nessage>

BP 1.0 - Service Description (WSDL) - Port Types.

The order of the elements in the soap: body of a MESSAGE MUST be the same as that of the wsdl : parts in the wsdl : nessage that
describes it.

A DESCRIPTION MAY use the par anet er O der attribute of an wsdl : oper ati on element to indicate the return value and method
signatures as a hint to code generators.

A DESCRIPTION MUST NOT use Sol i cit-Response and Noti ficati on type operations in a wsdl : port Type definition.
A wsdl : port Type in a DESCRIPTION MUST have operations with distinct values for their nane attributes.

A wsdl : port Type in a DESCRIPTION MUST be constructed so that the par anet er Or der attribute, if present, omits at most 1 wsdl : part
from the output message.

A wsdl : message in a DESCRIPTION MUST NOT specify both t ype and el enent attributes on the same wsdl : part.
BP 1.0 - Service Description (WSDL) - SOAP Binding.

The wsdl : bi ndi ng element in a DESCRIPTION MUST be constructed so that its soapbi nd: bi ndi ng child element specifies the t ransport
attribute.

A wsdl : bi ndi ng element in a DESCRIPTION MUST specify the HTTP transport protocol with SOAP binding. Specifically, the transport
attribute of its soapbi nd: bi ndi ng child MUST have the value "htt p: // schenmas. xm soap. or g/ soap/ htt p".

A wsdl : bi ndi ng in a DESCRIPTION MUST use either be arpc-1literal binding or a docunent-1iteral binding.

A wsdl : bi ndi ng in a DESCRIPTION MUST use the value of "l'i t eral " for the use attribute in all soapbi nd: body, soapbi nd: faul t,
soapbi nd: header and soapbi nd: header f aul t elements.

A wsdl : bi ndi ng in a DESCRIPTION that contains one or more soapbi nd: body, soapbi nd: f aul t, soapbi nd: header or
soapbi nd: header f aul t elements that do not specify the use attribute MUST be interpreted as though the value "l i t er al " had been
specified in each case.

file:///D]/workspace/wsd-guide/wsd-guide.html (6 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

A wsdl : port Type in a DESCRIPTION MAY have zero or more wsdl : bi ndi ngs that refer to it, defined in the same or other WSDL
documents.

The operations in a wsdl : bi ndi ng in a DESCRIPTION MUST result in wire signatures that are different from one another.

A DESCRIPTION SHOULD NOT have more than one wsdl : port with the same value for the | ocat i on attribute of the soapbi nd: addr ess
element.

A docunent -1iteral binding MUST be represented on the wire as a MESSAGE with a soap: Body whose child element is an instance of
the global element declaration referenced by the corresponding wsdl : nessage part.

For one-way operations, an INSTANCE MUST NOT return a HTTP response that contains a SOAP envelope. Specifically, the HTTP
response entity-body must be empty.

A CONSUMER MUST ignore a SOAP response carried in a response from a one-way operation.

For one-way operations, a CONSUMER MUST NOT interpret a successful HTTP response status code (i.e., 2xx) to mean the message is
valid or that the receiver would process it.

A docunent -1iteral binding in a DESCRIPTION MUST NOT have the nanespace attribute specified on contained soapbi nd: body,
soapbi nd: header, soapbi nd: header f aul t and soapbi nd: f aul t elements.

Anrpc-literal binding in a DESCRIPTION MUST have the namespace attribute specified, the value of which MUST be an absolute URI,
on contained soapbi nd: body elements.

An rpc-literal binding in a DESCRIPTION MUST NOT have the nanespace attribute specified on contained soapbi nd: header ,
soapbi nd: header f aul t and soapbi nd: f aul t elements.

A wsdl : bi ndi ng in a DESCRIPTION MUST have the same set of wsdl : oper ati ons as the wsdl : port Type to which it refers.
A wsdl : bi ndi ng in a DESCRIPTION MAY contain no soapbi nd: header f aul t elements if there are no known header faults.
A wsdl : bi ndi ng in a DESCRIPTION SHOULD contain a soapbi nd: f aul t describing each known fault.

A wsdl : bi ndi ng in a DESCRIPTION SHOULD contain a soapbi nd: header f aul t describing each known header fault.

A MESSAGE MAY contain a fault detail entry in a SOAP fault that is not described by a wsdl : f aul t element in the corresponding WSDL
description.

A MESSAGE MAY contain the details of a header processing related fault in a SOAP header block that is not described by a
wsdl : header f aul t element in the corresponding WSDL description.

A wsdl : bi ndi ng in a DESCRIPTION MUST use the attribute named part with a schema type of "NMTOKEN" on all contained
soapbi nd: header and soapbi nd: header f aul t elements.

A wsdl : bi ndi ng in a DESCRIPTION MUST NOT use the attribute named part s on contained soapbi nd: header and
soapbi nd: header f aul t elements.

CORRECT:

<bi ndi ng nanme="St ockQuot eSoap" type="tns: St ockQuot ePort Type" >
<soapbi nd: bi ndi ng styl e="docunent" transport="http://schemas. xm soap. or g/ soap/ http"/>
<oper ati on nane="Subscri beToQuot es" >
<i nput nessage="tns: Subscri beToQuot es" >

<soapbi nd: body parts="body" use="literal"/>

<soapbi nd: header nessage="t ns: Subscri beToQuot es" part="subscri beheader"
use="literal"/>

</i nput >
</ oper ati on>

</ bi ndi ng>

A wsdl : bi ndi ng in a DESCRIPTION MUST have the nane attribute specified on all contained soapbi nd: f aul t elements.

In a DESCRIPTION, the value of the nane attribute on a soapbi nd: f aul t element MUST match the value of the nanme attribute on its
parent wsdl : faul t element.

file:///ID|/workspace/wsd-guide/wsd-guide.html (7 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

Describe the use of XML Schema in J2EE Web services.
The W3C XML Schema Definition Language is a way of describing and constraining the content of XML documents.

The XML Schema specification consists of three parts. One part defines a set of simple datatypes, which can be associated with XML
element types and attributes; this allows XML software to do a better job of managing dates, numbers, and other special forms of
information. The second part of the specification proposes methods for describing the structure and constraining the contents of XML
documents, and defines the rules governing schema validation of documents. The third part is a primer that explains what schemas are,
how they differ from DTDs, and how one builds a schema.

XML Schema introduces new levels of flexibility that may accelerate the adoption of XML for significant industrial use. For example, a
schema author can build a schema that borrows from a previous schema, but overrides it where new unique features are needed. XML
Schema allows the author to determine which parts of a document may be validated, or identify parts of a document where a schema
may apply. XML Schema also provides a way for users of e-commerce systems to choose which XML Schema they use to validate
elements in a given namespace, thus providing better assurance in e-commerce transactions and greater security against unauthorized
changes to validation rules. Further, as XML Schema are XML documents themselves, they may be managed by XML authoring tools, or
through XSLT.

Let's start from "Hello World !I" example:

<?xm version="1.0" encodi ng="UTF-8" ?>

<greeti ng>
Hel l o Worl d!
</ greeting>

<?xm version="1.0" encodi ng="UTF-8" ?>

<xsd: schema xm ns: xsd="ht t p: // ww. w3. or g/ 2001/ XM_Schema" >
<xsd: el enent nanme="greeti ng" type="xsd:string"/>
</ xsd: schema>

Here is a simple data structure for a purchase order. The order example contains following elements: company name, product identifier,
and price.

<?xm version="1.0" encodi ng="UTF-8" ?>

<or der _r equest >
<conpany_nane>l BA USA, | nc. </ conpany_nane>
<product _i d>C- 0YST</ pr oduct _i d>
<pr oduct _pri ce>500. 00</ pr oduct _pri ce>

</ or der _r equest >

This example represents pricing data as a floating-point number and company name and product identifier as strings. Agreement among
different programs about how to handle data is essential. XML solves data typing issues through the use of XML Schemas. The following
example shows how each element in the order request can be designated a specific data type:

<?xm version="1.0" encodi ng="UTF-8" ?>

<xsd: schema xm ns: xsd="'http://ww. w3. or g/ 2001/ XM_Schema' >
<xsd: el enent nanme="or der _request">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="conpany_nanme" type="xsd:string"/>
<xsd: el enent nanme="product _id" type="xsd:string"/>
<xsd: el ement nane="product_price" type="xsd: doubl e"/>
</ xsd: sequence>

file:///D]/workspace/wsd-guide/wsd-guide.html (8 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

Another example of XML document for more complex purchase order:

The XML Schema (one of many possible) for this document will be:

file:///D|/workspace/wsd-guide/wsd-guide.html (9 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

NOTE: ref attribute allows to refer in Schema to outside element definition using nane attribute of element. You should differ it from
reffering to outside element in SOAP 1.1 Message, which uses hr ef attribute with value #sonme_uni que_val ue and target element must

have i d attribute with value some_uni que_val ue:

In cases when a field in a data structure is referred to in several places in that data structure (for example, in a doubly linked list), then
the field is serialized as an independent element, an immediate child element of Body, and must have an i d attribute of type xsd: | D.
Such elements are called multireference accessors. They provide access to the data in the field from multiple locations in the message.
Each reference to the field in the data structure is serialized as an empty element with an hr ef attribute of type xsd: anyURI , where the
value of the attribute contains the identifier specified in the i d attribute on the multireference accessor preceded by a fragment

identifier, # (pound sign).

The following code:

The SOAP 1.1 message for Per son. conpare(...) call may look like this:

file:///D|/workspace/wsd-guide/wsd-guide.html (10 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

Default value of mi nCccurs is 1.
Default value of maxCccurs is 1.
XML Schema defines four main elements:

xsd: el enent declares an element and assigns it a type.
xsd: attri but e declares an attribute and assigns it a type.
xsd: conpl exType defines a new complex type.

xsd: si npl eType defines a new simple type.

ponNPE

Attribute values are always simple types. Attributes are unordered.

It does not matter whether complex type is defined before or after the element declaration as long as it is present in the schema
document.

You can derive new simple types from existing types. An xsd: si npl eType element defines the subtype. The nane attribute of

xsd: si npl eType assigns a name to the new type, by which it can be referred to in xsd: el enent type attributes. An xsd: restriction
child element derives by restricting the legal values of the base type. An xsd: | i st child element derives a type as a white space
separated list of base type instances. An xsd: uni on child element derives by combining legal values from multiple base types.

You can derive new simple types types from existing types by restricting the type to a subset of its normal values. An xsd: si npl eType
element defines the restricted type. The nane attribute of xsd: si npl eType assigns a hame to the new type. An xsd: restri cti on child
element specifies what type is being restricted via its base attribute. Facet children of xsd: restri cti on specify the constraints on the
type. For example, this xsd: si npl eType element defines a nyYear as any year from 1974 on:

Then you declare the year element like this:

Facets include: | engt h, mi nLengt h, maxLengt h, pattern, enuner ati on, whi t eSpace, max| ncl usi ve, maxExcl usi ve, m nl ncl usi ve,
m nExcl usive, total Digits, fractionDi gits. Not all facets apply to all types.

For example, new string type must contain between 1 and 255 characters:

file:///D|/workspace/wsd-guide/wsd-guide.html (11 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

For example, the new year type must be between 1974 and 2100:

The enuner at i on facet lists all allowed values. Applies to all simple types except bool ean. For example, the computer brand name must
be one of the following : IBM, COMPAQ, DELL, HP.

Each element in the xsd: al | group must occur zero or once; that is mi nCccurs and maxCccur s must each be 0 or 1. The xsd: al | group
must be the top level element of its type. The xsd: al | group may contain only individual element declarations; no choices or sequences.
Example:

xsd: choi ce requires exactly one of a group of specified elements to appear. The choi ce can have m nCccurs and naxCccur s attributes
that adjust this from zero to any given number. Example:

file:///D|/workspace/wsd-guide/wsd-guide.html (12 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

<xsd: schema xm ns: xsd="ht t p: // ww. w3. or g/ 2001/ XM_Schema" >
<xsd: conpl exType nane="conputer">
<xsd: sequence>
<xsd: el ement nane="nane" type="xsd:string"/>
<xsd: choi ce m nCccurs="1" maxCccurs="1">
<xsd: el enent nane="desktop" type="xsd:string"/>
<xsd: el ement nanme="not ebook" type="xsd:string"/>
<xsd: el enent nane="handhel d" type="xsd: string"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>

xsd: sequence requires each child element it specifies to appear in the specified order. The sequence can have m nCccurs and
maxCQccur s attributes that repeat each sequence zero to any given number of times.

Describe the use of namespaces in an XML document.

The XML namespaces recommendation defines a way to distinguish between duplicate element type and attribute names. Such
duplication might occur, for example, in an XSLT stylesheet or in a document that contains element types and attributes from two
different DTDs.

An XML namespace is a collection of element type and attribute names. The namespace is identified by a unique name, which is a URI.
Thus, any element type or attribute name in an XML namespace can be uniquely identified by a two-part name: the name of its XML
namespace and its local name. This two-part naming system is the only thing defined by the XML namespaces recommendation.

XML namespaces are declared with an xnl ns attribute, which can associate a prefix with the namespace. You can declare an XML
namespace on any element in an XML document. The declaration is in scope for the element containing the attribute and all its
descendants (unless it is overridden or undeclared on one of those descendants). It is a common practice to declare all namespaces
within the root element. For example:

<I-- Declares two XM. nanmespaces. Their scope is the 'aaa' and 'bbb' elenents. -->

<aaa xm ns:foo="http://ww.foo.org/" xm ns="http://ww.bar.org/">
<bbb>abcd</ bbb>
</ aaa>

If an XML namespace declaration contains a prefix, you refer to element type and attribute names in that namespace with the prefix. For
example:

<l-- 'aaa' and 'bbb' are in the '"http://ww.foo.org/' nanmespace
which is associated with the 'foo' prefix. -->

<f 00: aaa xm ns: foo="http://ww.foo.org/">
<f oo: bbb>abcd</ f oo: bbb>
</ f 0o: aaa>

If an XML namespace declaration does not contain a prefix, the namespace is the default XML namespace and you refer to element type
names in that namespace without a prefix. For example:

<I-- This is equivalent to the previous exanple but uses a
DEFAULT nanespace instead of the 'foo' prefix. -->

<aaa xm ns="http://ww.foo.org/">
<bbb>abcd<bbb>
</ aaa>

The value (unique URI) of the xmi ns attribute identifies the namespace, not the prefix. In this example, all elements belong to the same
namespace although different prefixes are used.

file:///D|/workspace/wsd-guide/wsd-guide.html (13 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

<l-- 'aaa' and 'bbb' belong to the same 'http://ww.foo0.0rg/' nanespace. -->

<f 0oo: aaa xnml ns: foo="http://ww. foo.org/" xm ns:bar="http://ww.foo.org/">
<bar : bbb>abcd</ bar : bbb>
</ f oo: aaa>

In this example, all elements belong to different namespaces although they have the same prefixes.

<l-- 'aaa' and 'bbb' belong to different namespaces. -->

<f 0o: aaa xml ns: foo="http://ww. foo.org/">
<f 0o: aaa />

</ f oo: aaa>

<f 0o: bbb xm ns: foo="http://ww. bar.org/">
<f 0o: bbb />

</ f oo: bbb>

You may override the prefix used in an XML namespace declaration, simply declare another XML namespace with the same prefix. For
example, in the following, the f oo prefix is associated with the http://ww. f 00. or g/ namespace on the aaa element and the
http://ww. bar. org/ namespace on the bbb element. That is, the name aaa is in the htt p: / / ww. f 00. or g/ namespace and the name
bbb is in the htt p://ww. bar. or g/ namespace.

<!-- 'bbb' belongs to overriden 'http://ww.bar.org/' nanespace. -->

<f 0o: aaa xm ns: foo="http://ww. foo.org/">
<f oo: bbb xm ns: f oo="htt p: //ww. bar. or g/ " >abcd</ f oo: bbb>
</ f oo: aaa>

This practice leads to documents that are confusing to read and should be avoided.

When an XML namespace declaration goes out of scope, it simply no longer applies. For example, in the following, the declaration of the
http://ww. f 00. org/ namespace does not apply to the bbb element because this is outside its scope.

<!-- 'bbb' does NOT belong to any nanespace. -->

<aaa xm ns="http://ww.foo. org/">abcd</ aaa>
<bbb>abcd</ bbb>

You may undeclare the default XML namespace - declare a default XML namespace with an empty (zero-length) name (URI). Within the
scope of this declaration, unprefixed element type names do not belong to any XML namespace. For example, in the following, the
default XML namespace is the htt p: // ww. f 00. or g/ for the aaa and there is no default XML namespace for the bbb elements. The name
aaa is in the htt p: // www. f 00. or g/ namespace and the name bbb is not in any XML namespace.

<!-- 'bbb' does NOT belong to any nanespace. -->

<aaa xm ns="http://ww.foo.org/">
<aaa>
<bbb xm ns="">
<bbb>abcd</ bbb>
</ bbb>
</ aaa>
</ aaa>

You may NOT undeclare XML namespace prefix. It remains in scope until the end of the element on which it was declared unless it is
overridden. Furthermore, trying to undeclare a prefix by redeclaring it with an empty (zero-length) name (URI) results in a namespace
error. For example:

file:///D|/workspace/wsd-guide/wsd-guide.html (14 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

<I-- You nay NOT undecl are XML nanespace prefix. -->

<f 0oo: aaa xm ns: foo="http://ww. foo.org/">
<f 0o: aaa>
<f oo: bbb xm ns: foo=""> <!-- ERROR -->
<f 0o: bbb>abcd</ f oo: bbb>
</ f oo: bbb>
</ f oo: aaa>
</ f oo: aaa>

Attributes can be also explicitly assigned to the given namespace. See the example:

<l--
You may assign nanespaces to attributes.
' bbb' el ement belongs to 'http://ww. bar.org/' nanmespace.
"attr' attribute belongs to 'http://ww.foo.0rg/' nanespace.
oo >

<f oo: aaa xnl ns: foo="http://ww. foo.org/" xm ns:bar="http://ww.bar.org/">
<bar: bbb foo:attr="attri bute">abcd</bar: bbb>
</ f oo: aaa>

Attributes without a prefix never belongs to any namespace. The attributes do not belong to any namespace even if a default namespace
is defined for the relevant element.

Chapter 2. SOAP 1.1 Web Service Standards
List and describe the encoding types used in a SOAP message.

The SOAP encoding style is based on a simple type system that is a generalization of the common features found in type systems in
programming languages, databases and semi-structured data. A type either is a simple (scalar) type or is a compound type constructed
as a composite of several parts, each with a type. This is described in more detail below. This section defines rules for serialization of a
graph of typed objects. It operates on two levels. First, given a schema in any notation consistent with the type system described, a
schema for an XML grammar may be constructed. Second, given a type-system schema and a particular graph of values conforming to
that schema, an XML instance may be constructed. In reverse, given an XML instance produced in accordance with these rules, and
given also the original schema, a copy of the original value graph may be constructed.

There are following SOAP encoding types:
Simple Types:

o Strings
o Enumerations
o Array of Bytes

. Compound Types:

o Arrays
o Structures

Simple Types

For simple types, SOAP adopts all the types found in the section "Built-in datatypes" of the "XML Schema Part 2: Datatypes"
Specification, both the value and lexical spaces. Examples include: bool ean (true, fal se, 0 or 1), byte, short, int,|ong, float,
doubl e, string (j ava. |l ang. String), deci nal (j ava. mat h. Bi gDeci mal), date (j ava. util. G egori anCal endar), dateTi ne

(j ava. uti | . Dat e), SOAP- ENC: base64 (byte []).

The following examples are a SOAP representation of these primitive data types:

<el ement nane="age" type="int"/>
<el ement nane="hei ght" type="float"/>
<el ement nanme="di spl acenent" type="negativel nteger"/>
<el ement nane="col or">
<si npl eType base="xsd: string">
<enuneration val ue="G een"/>

file:///D|/workspace/wsd-guide/wsd-guide.html (15 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

<enuneration val ue="Bl ue"/>
</ si npl eType>
</ el enent >

<age>45</ age>

<hei ght >5. 9</ hei ght >

<di spl acenent >- 450</ di spl acenent >
<col or >Bl ue</ col or >

Strings

The datatype "string" is defined in "XML Schema Part 2: Datatypes" Specification. Note that this is not identical to the type called
"string" in many database or programming languages, and in particular may forbid some characters those languages would permit.
(Those values must be represented by using some datatype other than xsd: stri ng.) A string MAY be encoded as a single-reference or a
multi-reference value. The containing element of the string value MAY have an "i d" attribute. Additional accessor elements MAY then
have matching "hr ef " attributes. For example, two accessors to the same string could appear, as follows:

<greeting id="String-0">Hel | o</ greeting>
<sal utation href="#String-0"/>

However, if the fact that both accessors reference the same instance of the string (or subtype of string) is immaterial, they may be
encoded as two single-reference values as follows:

<gr eeti ng>Hel | o</ greeti ng>
<sal ut ati on>Hel | o</ sal ut ati on>

Schema fragments for these examples could appear similar to the following:

<el ement nanme="greeting" type="SOAP-ENC: string"/>
<el ement nane="sal utation" type="SOAP-ENC: string"/>

(In this example, the type SOAP- ENC: st ri ng is used as the element's type as a convenient way to declare an element whose datatype is
"xsd: string" and which also allows an "i d" and "hr ef " attribute. See the SOAP Encoding schema for the exact definition. Schemas MAY
use these declarations from the SOAP Encoding schema but are not required to.)

Enumerations

Enumeration as a concept indicates a set of distinct names. A specific enumeration is a specific list of distinct values appropriate to the
base type. For example the set of color names ("G een”, "Bl ue", "Br own") could be defined as an enumeration based on the st ri ng built-
in type. The values (1", "3", "5") are a possible enumeration based on integer, and so on. "XML Schema Part 2: Datatypes" supports
enumerations for all of the simple types except for bool ean. The language of "XML Schema Part 1: Structures" Specification can be used
to define enumeration types. If a schema is generated from another notation in which no specific base type is applicable, use "stri ng".
In the following schema example "EyeCol or " is defined as a st ri ng with the possible values of "G een", "Bl ue", or "Br own" enumerated,
and instance data is shown accordingly:

<el ement nane="EyeCol or" type="tns: EyeCol or"/>

<si npl eType nanme="EyeCol or" base="xsd:string">
<enuner ati on val ue="G een"/>
<enuner ati on val ue="Bl ue"/>
<enuneration val ue="Brown"/>

</ si nmpl eType>

<Per son>
<Narme>M kal ai Zai ki n</ Nanme>
<Age>29</ Age>
<EyeCol or >Br own</ EyeCol or >
</ Per son>

file:///D|/workspace/wsd-guide/wsd-guide.html (16 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

Array of Bytes

An array of bytes MAY be encoded as a single-reference or a multi-reference value. The rules for an array of bytes are similar to those
for a string. In particular, the containing element of the array of bytes value MAY have an "i d" attribute. Additional accessor elements
MAY then have matching "hr ef " attributes. The recommended representation of an opaque array of bytes is the 'base64' encoding
defined in XML Schemas, which uses the base64 encoding algorithm. However, the line length restrictions that normally apply to base64
data in MIME do not apply in SOAP. A "SOAP- ENC: base64" subtype is supplied for use with SOAP:

<pi cture xsi:type="S0OAP- ENC: base64" >
a@3| GbvDyBi cn73bi Bj b3cNCg==
</ pi cture>

Polymorphic Accessor

Many languages allow accessors that can polymorphically access values of several types, each type being available at run time. A
polymorphic accessor instance MUST contain an "xsi : t ype" attribute that describes the type of the actual value. For example, a
polymorphic accessor named "cost " with a value of type "xsd: f | oat " would be encoded as follows:

<cost xsi:type="xsd: fl oat">29. 95</ cost >

as contrasted with a cost accessor whose value's type is invariant, as follows:

<cost >29. 95</ cost >

Compound types

A "struct" is a compound value in which accessor name is the only distinction among member values, and no accessor has the same
name as any other.

An "array" is a compound value in which ordinal position serves as the only distinction among member values.
Structures

The members of a Compound Value are encoded as accessor elements. When accessors are distinguished by their name (as for example
in a struct), the accessor name is used as the element name. Accessors whose names are local to their containing types have unqualified
element names; all others have qualified names. The following is an example of a struct of type "book":

<book>
<aut hor >M kal ai Zai ki n</ aut hor >
<titl e>SCDIWs Study CGuide</title>
<intro>This is a certification guide</intro>
</ book>

And this is a schema fragment describing the above structure:

<xsd: el ement nane="book" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nanme="aut hor" type="xsd:string" />
<xsd: el enent name="title" type="xsd:string" />
<xsd: el enent nanme="intro" type="xsd:string" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

file:///D|/workspace/wsd-guide/wsd-guide.html (17 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

Arrays

SOAP arrays are defined as having a type of "SOAP- ENC: Array" or a type derived there from. Arrays are represented as element values,
with no specific constraint on the name of the containing element (just as values generally do not constrain the name of their containing
element). Arrays can contain elements which themselves can be of any type, including nested arrays. New types formed by restrictions
of SOAP- ENC: Arr ay can also be created to represent, for example, arrays limited to integers or arrays of some user-defined
enumeration. The representation of the value of an array is an ordered sequence of elements constituting the items of the array. Within
an array value, element names are not significant for distinguishing accessors. Elements may have any name. In practice, elements will
frequently be named so that their declaration in a schema suggests or determines their type. As with compound types generally, if the
value of an item in the array is a single-reference value, the item contains its value. Otherwise, the item references its value via an

"hr ef " attribute. The following example is a schema fragment and an array containing integer array members:

<el ement nane="myFavoriteNunbers" type="SOAP-ENC: Array"/>

<myFavoriteNunbers SOAP-ENC: arrayType="xsd:int[3]">
<nunber >1</ nunber >
<nunber >2</ nunber >
<nunber >3</ nunber >

</ nyFavorit eNunber s>

In that example, the array "nyFavori t eNunber s™ contains several members each of which is a value of type xsd: i nt. This can be
determined by inspection of the SOAP- ENC: ar r ay Type attribute. Note that the SOAP- ENC: Arr ay type allows unqualified element names
without restriction. These convey no type information, so when used they must either have an xsi : t ype attribute or the containing
element must have a SOAP- ENC: ar r ay Type attribute. Naturally, types derived from SQAP- ENC: Ar r ay may declare local elements, with
type information. As previously noted, the SOAP- ENC schema contains declarations of elements with names corresponding to each simple
type in the "XML Schema Part 2: Datatypes" Specification. It also contains a declaration for "Array". Using these, we might write:

<SOAP- ENC: Array SOAP-ENC: arrayType="xsd:int[3]">
<SOAP- ENC: i nt >1</ SOAP- ENC: i nt >
<SOAP- ENC: i nt >2</ SOAP- ENC: i nt >
<SOAP- ENC: i nt >3</ SOAP- ENC: i nt >

</ SOAP- ENC: Ar r ay>

Arrays can contain instances of any subtype of the specified arrayType. That is, the members may be of any type that is substitutable
for the type specified in the arr ayType attribute, according to whatever substitutability rules are expressed in the schema. So, for
example, an array of integers can contain any type derived from integer (for example "i nt " or any user-defined derivation of integer).
Similarly, an array of "addr ess™ might contain a restricted or extended type such as "i nt er nat i onal Addr ess". Because the supplied
SOAP- ENC: Ar r ay type admits members of any type, arbitrary mixtures of types can be contained unless specifically limited by use of the
arrayType attribute.

Array values may be structs or other compound values. For example an array of "my:order" structs :

<SOAP- ENC: Array SOAP-ENC: arrayType="ny: order[2]">
<or der >
<pr oduct >Mel on</ pr oduct >
<price>0.99</ pri ce>
</ or der >
<or der >
<pr oduct >Appl e</ pr oduct >
<price>1.49</price>
</ or der >
</ SOAP- ENC: Ar r ay>

Arrays may have other arrays as member values. The following is an example of an array of two arrays, each of which is an array of
strings:

<SOAP- ENC: Array SOAP-ENC: arrayType="xsd: string[][2]">
<item href="#array-1"/>
<item href="#array-2"/>

</ SOAP- ENC: Arr ay>

<SOAP- ENC: Array id="array-1" SOAP-ENC: arrayType="xsd: string[3]">
<i t empr owlcol umi</itenm>

file:///D|/workspace/wsd-guide/wsd-guide.html (18 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

Arrays may be multi-dimensional. In this case, more than one size will appear within the asi ze part of the arrayType attribute:

NOTE: According to WS-1 BP 1.0 you MUST NOT use soapenc: Array type for array declarations or soapenc: arrayType attribute in the
type declarations.

Mapping between XML Schema types and SOAP Java types

Table 2.1. Mapping between XML Schema types and SOAP Java types

XML Schema type SOAP Java type
string java.lang. String
i nt eger java. mat h. Bi gl nt eger
int int
int java.lang. I nteger (ifnillable="true")
| ong I'ong
l ong java.lang. Long (if nillabl e="true")
short short
short java.lang. Short (if nillable="true")
deci mal j ava. mat h. Bi gDeci mal
f1oat f1 oat
fl oat java.lang. Float (ifnnillable="true")
doubl e doubl e
doubl e java.l ang. Doubl e (if ni | | abl e="true")
bool ean bool ean
bool ean java. |l ang. Bool ean (if ni | | abl e="true")
byte byt e
byte java.lang. Byte (if nillabl e="true")
dat eTi ne java.util. G egorianCal endar
base64Bi nary byte[]
hexBi nary byte[]
time java.util.G egorianCal endar
date java.util. G egorianCal endar
anySi npl eType java.lang. String

file:///D|/workspace/wsd-guide/wsd-guide.html (19 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

any javax. xm . soap. SOAPE! enent

Element that is nillable, meaning that the element CAN BE EMPTY without causing a validation error. For each of the XML schema built-in
types that map to a Java primitive, there is a corresponding Java primitive wrapper that can be used if a ni | | abl e="true" attribute is
specified.

Example of mapping XML Schema-Java class

XML Schema:

Java class:

NOTE: Since zi p is not nillable, it can be primitive, otherwise it would be:

XML Schema:

Java class:

In XML Schema, we can use ni | | abl e attribute to indicate that whether the element's content could be ni | , as in <xsd: el enent
name="bi rt hDate" type="xsd:date" nillabl e="true"/>. If the content of an element is ni | , we can use xsi : ni | attribute to signal
the processor, as in <birthDate xsi:nil="true" /> and this element must not contain any content.

More examples on ni | | abl e attribute. Consider following XML Schema:

file:///D|/workspace/wsd-guide/wsd-guide.html (20 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

INVALID (when xsi : ni |l istrue, the element MUST BE EMPTY):

INVALID (element r oot El enent MUST have nyEl enent child and xsi : ni| has not been set to true):

Mapping arbitrary XML content to Java

The <xsd: any/ > element is an element that represents arbitrary XML content within an XML document. It is what its name indicates:
any kind of XML. This lets you create complex type definitions in an XML Schema without describing what the exact structure of certain
parts of the complex type is. Here is an example that shows the definition of a type called Or der . It contains two regular elements and
one <xsd: any/ > element:

An instance of this type can contain any number of additional XML elements without violating the schema definition. You can add
additional information to an Order element without defining its format in the schema. The JAX-RPC 1.1 specification defines that
<xsd: any/ > element is mapped to the SAAJ's j avax. xnl . soap. SOAPEI enent interface. This means that the Service Endpoint Interface

file:///D|/workspace/wsd-guide/wsd-guide.html (21 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

[SEI] will contain a parameter or return value of type j avax. xnl . soap. SOAPEI enent for each place in the schema where <xsd: any/ >
was used and, respectively, j avax. xm . soap. SOAPEl enent [] if the maxCccur s attribute is bigger than 1. Therefore, a JAX-RPC tool will
generate the following class from the sample schema above:

public class Order inplenents java.io.Serializable {
private java.util.G egori anCal endar date;
private java.lang. String custoner;
private javax.xml .soap. SOAPEl enent[] _any;

This approach can be usefule when your Web service uses some data that you don't want to be mapped into a Java class, but rather
want to let the JAX-RPC engine hand it to the implementation in its XML form. The implementation could then parse it or simply pass it
on as XML for further processing in the backend application. Similarly, you can create a client proxy that lets you pass in a SOAPEl enent
rather than a mapped Java object.

Describe how SOAP message header blocks are used and processed.

SOAP provides a flexible mechanism for extending a message in a decentralized and modular way without prior knowledge between the
communicating parties. Typical examples of extensions that can be implemented as header entries are authentication, transaction
management, payment etc.

The Header element is encoded as the first immediate child element of the SOAP Envel ope XML element. NOTE: The Header element is
OPTIONAL. All immediate child elements of the Header element are called header entries (Header element may contain multiple child
elements - header entries). Header entries can have following attributes: act or, encodi ngSt yl e, must Under st and.

The encoding rules for header entries are as follows:

1. A header entry is identified by its fully qualified element name, which consists of the namespace URI and the local name. All
immediate child elements of the SOAP Header element MUST be namespace-qualified.

2. The SOAP encodi ngSt yl e attribute MAY be used to indicate the encoding style used for the header entries.

3. The SOAP nust Under st and attribute and SOAP act or attribute MAY be used to indicate how to process the entry and by whom.

The SOAP Header attributes defined in this section determine how a recipient of a SOAP message should process the message. A SOAP
application generating a SOAP message SHOULD only use the SOAP Header attributes on immediate child elements of the SOAP Header
element. The recipient of a SOAP message MUST ignore all SOAP Header attributes that are not applied to an immediate child element of
the SOAP Header element.

An example is a header with an element identifier of "Tr ansacti on", a "nust Under st and" value of "1", and a value of 12345. This would
be encoded as follows:

<SQOAP- ENV: Header >
<t:Transaction xnl ns:t="sonme- URI " SOAP- ENV: nust Under st and="1">
12345
</t:Transacti on>
</ SOAP- ENV: Header >

or

<?xm version="1.0" encodi ng="UTF-8"?>

<soap: Envel ope xml ns: soap="htt p://wwmw. w3. or g/ 2001/ 12/ soap- envel ope"
soap: encodi ngStyl e="ht t p: // ww. w3. or g/ 2001/ 12/ soap- encodi ng" >
<soap: Header >
<t:Transacti on xm ns:t="sonme- URl" soap: nust Under st and="1">
12345
</t:Transaction>
</ soap: Header >

</ soap: Envel ope>

A SOAP message travels from the originator to the ultimate destination, potentially by passing through a set of SOAP intermediaries
along the message path. A SOAP intermediary is an application that is capable of both receiving and forwarding SOAP messages. Both
intermediaries as well as the ultimate destination are identified by a URI. Not all parts of a SOAP message may be intended for the

file:///D|/workspace/wsd-guide/wsd-guide.html (22 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

ultimate destination of the SOAP message but, instead, may be intended for one or more of the intermediaries on the message path. The
role of a recipient of a header element is similar to that of accepting a contract in that it cannot be extended beyond the recipient. That
is, a recipient receiving a header element MUST NOT forward that header element to the next application in the SOAP message path. The
recipient MAY insert a similar header element but in that case, the contract is between that application and the recipient of that header
element. The SOAP act or global attribute can be used to indicate the recipient of a header element. The value of the SOAP act or
attribute is a URI:

The special URI "htt p: // schemas. xm soap. or g/ soap/ act or/ next " indicates that the header element is intended for the very first SOAP
application that processes the message. This is similar to the hop-by-hop scope model represented by the Connecti on header field in
HTTP. NOTE: Omitting the SOAP act or attribute indicates that the recipient is the ultimate destination of the SOAP message. This
attribute MUST appear in the SOAP message instance in order to be effective.

An example:

In this example header will be processed by first application:

The SOAP nust Under st and global attribute can be used to indicate whether a header entry is mandatory or optional for the recipient to
process. The recipient of a header entry is defined by the SOAP act or attribute. The value of the nust Under st and attribute is either "1"
or "0".

file:///D|/workspace/wsd-guide/wsd-guide.html (23 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

soap: nmust Under st and="0]| 1"

The absence of the SOAP nust Under st and attribute is semantically equivalent to its presence with the value "0". If a header element is
tagged with a SOAP nust Under st and attribute with a value of "1", the recipient of that header entry either MUST obey the semantics (as
conveyed by the fully qualified name of the element) and process correctly to those semantics, or MUST fail processing the message.
The SOAP nust Under st and attribute allows for robust evolution. Elements tagged with the SOAP nust Under st and attribute with a value
of "1" MUST be presumed to somehow modify the semantics of their parent or peer elements. Tagging elements in this manner assures

that this change in semantics will not be silently (and, presumably, erroneously) ignored by those who may not fully understand it. This
attribute MUST appear in the instance in order to be effective.

An example:

<?xm version="1.0" encodi ng="UTF-8"?>

<soap: Envel ope xml ns: soap="htt p://ww. w3. or g/ 2001/ 12/ soap- envel ope"
soap: encodi ngStyl e="ht t p: // ww. w3. or g/ 2001/ 12/ soap- encodi ng" >
<soap: Header >
<t:Transaction xm ns:t="some- URI "
soap: actor="http:// myserver.conl nyactor"
soap: nust Under st and="1">
12345
</t:Transaction>
</ soap: Header >

</ soap: Envel ope>

Describe the function of each element contained in a SOAP message, the SOAP binding to HTTP, and how to
represent faults that occur when processing a SOAP message.

A SOAP message is an XML document that consists of a mandatory SOAP envelope, an optional SOAP header, and a mandatory SOAP
body. The namespace identifier for the elements and attributes from SOAP message is
"htt p: // schemas. xm soap. or g/ soap/ envel ope/ ". A SOAP message contains the following:

The Envel ope is the top element of the XML document representing the message.

. The Header is a generic mechanism for adding features to a SOAP message in a decentralized manner without prior agreement
between the communicating parties. SOAP defines a few attributes that can be used to indicate who should deal with a feature
and whether it is optional or mandatory. NOTE: Header element is OPTIONAL.

. The Body is a container for mandatory information intended for the ultimate recipient of the message. SOAP defines one element

for the body, which is the Faul t element used for reporting errors. NOTE: Body element is MANDATORY and MUST be exactly 1
per message.

The grammar rules are as follows:
1. Envelope

. The element name is "Envel ope".

. The element MUST be present in a SOAP message.

. The element MAY contain namespace declarations as well as additional attributes. If present, such additional attributes
MUST be namespace-qualified. Similarly, the element MAY contain additional sub elements. If present these elements MUST
be namespace-qualified and MUST follow the SOAP Body element.

<xs: schema xnl ns: xs="http://ww. w3. or g/ 2001/ XM_Schera"
xm ns:tns="http://schemas. xm soap. or g/ soap/ envel ope/"
t ar get Namespace="htt p: // schemas. xm soap. or g/ soap/ envel ope/ " >

<xs: conpl exType nanme="Envel ope" >

<XS: sequence>
<xs: el ement ref="tns: Header" m nCccurs="0" />
<xs: el ement ref="tns: Body" m nCccurs="1" />
<xs:any nanespace="##ot her" m nCccurs="0" nmaxQccurs="unbounded"

processCont ent s="| ax" />
</ xs: sequence>
<xs:anyAttribute namespace="##ot her" processContents="|ax" />

file:///D|/workspace/wsd-guide/wsd-guide.html (24 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

</ xs: conpl exType>

</ xs: schema>

2. Header

. The element name is "Header ".

. The element MAY be present in a SOAP message. If present, the element MUST be the first immediate child element of a
SOAP Envel ope element.

. The element MAY contain a set of header entries each being an immediate child element of the SOAP Header element. All
immediate child elements of the SOAP Header element MUST be namespace-qualified.

NOTE: WS-I BP 1.0 requires all immediate children of Header element be namespace qualified.

<xs:schema xnl ns: xs="http://wwmw. w3. or g/ 2001/ XM_Schena"
xm ns:tns="http://schemas. xm soap. or g/ soap/ envel ope/ "
t ar get Nanespace="htt p: // schemas. xm soap. or g/ soap/ envel ope/ " >

<xs: conpl exType nanme="Header">
<XS:sequence>
<xs:any nanespace="##ot her" m nCccurs="0" maxCccurs="unbounded"
processCont ent s="| ax" />
</ xs: sequence>
<xs:anyAttri bute namespace="##ot her" processContents="|ax" />
</ xs: conpl exType>

</ xs: schema>

3. Body

. The element name is "Body".

. The element MUST be present in a SOAP message and MUST be an immediate child element of a SOAP Envel ope element.
It MUST directly follow the SOAP Header element if present. Otherwise it MUST be the first immediate child element of the
SOAP Envel ope element.

. The element MAY contain a set of body entries each being an immediate child element of the SOAP Body element.
Immediate child elements of the SOAP Body element MAY be namespace-qualified. SOAP defines the SOAP Faul t element,
which is used to indicate error messages.

NOTE: WS-I BP 1.0 requires all immediate children of Body element be namespace qualified.

<xs:schema xnl ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns:tns="http://schemas. xm soap. or g/ soap/ envel ope/ "
t ar get Namespace="htt p: // schemas. xm soap. or g/ soap/ envel ope/ " >

<xs: conpl exType nanme="Body" >
<XS:sequence>
<xs:any nanespace="##any" m nCccurs="0" maxCccurs="unbounded" processContents="|ax"
/>
</ xs: sequence>
<xs:anyAttribute namespace="##any" processContents="|ax">
<xs: annot ati on>
<xs:docunent ati on>
Prose in the spec does not specify that attributes are all owed on
t he Body el enent
</ xs: docunent ati on>
</ xs: annot ati on>
</ xs:anyAttri but e>
</ xs: conpl exType>

</ xs: schema>

The SOAP Body element provides a simple mechanism for exchanging mandatory information intended for the ultimate recipient of the
message. Typical uses of the Body element include marshalling RPC calls and error reporting. The Body element is encoded as an
immediate child element of the SOAP Envel ope XML element. If a Header element is present then the Body element MUST immediately

file:///D|/workspace/wsd-guide/wsd-guide.html (25 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

follow the Header element, otherwise it MUST be the first immediate child element of the Envel ope element. All immediate child
elements of the Body element are called body entries and each body entry is encoded as an independent element within the SOAP Body
element. The encoding rules for body entries are as follows:

1. A body entry is identified by its fully qualified element name, which consists of the namespace URI and the local name. Immediate
child elements of the SOAP Body element MAY be namespace-qualified.

NOTE: WS-I BP 1.0 requires all immediate children of Body element be namespace qualified.
2. The SOAP encodi ngSt yl e attribute MAY be used to indicate the encoding style used for the body entries (this attribute MAY

appear on any element, and is scoped to that element's contents and all child elements not themselves containing such an
attribute, much as an XML namespace declaration is scoped).

SOAP Fault

SOAP defines one body entry, which is the Faul t entry used for reporting errors. Here is schema definition of Faul t element:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns:tns="http://schemas. xm soap. or g/ soap/ envel ope/ "
t ar get Namespace="htt p: // schemas. xm soap. or g/ soap/ envel ope/ " >

<xs: conpl exType name="Fault" fi nal ="extension">
<xs:annot at i on>
<xs:docunent ati on>Fault reporting structure</xs:docunentation>
</ xs: annot ati on>
<XS:sequence>
<xs: el ement nane="faul t code" type="xs: QNane" />
<xs:el enent name="faul tstring" type="xs:string" />
<xs: el ement name="faultactor" type="xs:anyUR" mi nCccurs="0" />
<xs: el ement nane="detail" type="tns:detail" m nCccurs="0" />
</ xs: sequence>
</ xs: conpl exType>

</ xs: schema>

The SOAP Faul t element is used to carry error and/or status information within a SOAP message. If present, the SOAP Faul t element
MUST appear as a body entry and MUST NOT appear more than once within a Body element. The SOAP Faul t element defines the
following four subelements:

1. faultcode - The f aul t code element is intended for use by software to provide an algorithmic mechanism for identifying the fault.
The faul t code MUST be present in a SOAP Faul t element and the f aul t code value MUST be a qualified name. SOAP defines a
small set of SOAP fault codes covering basic SOAP faults.

2. faultstring - The faul t st ri ng element is intended to provide a human readable explanation of the fault and is not intended for
algorithmic processing. The faul t st ri ng element is similar to the 'Reason- Phr ase' defined by HTTP. It MUST be present in a
SOAP Faul t element and SHOULD provide at least some information explaining the nature of the fault.

3. faultactor - The f aul t act or element is intended to provide information about who caused the fault to happen within the
message path. It is similar to the SOAP act or attribute but instead of indicating the destination of the header entry, it indicates
the source of the fault. The value of the f aul t act or attribute is a URI identifying the source. Applications that do not act as the
ultimate destination of the SOAP message MUST include the f aul t act or element in a SOAP Faul t element. The ultimate
destination of a message MAY use the f aul t act or element to indicate explicitly that it generated the fault.

4. detail - The detai | element is intended for carrying application specific error information related to the Body element. It MUST be
present if the contents of the Body element could not be successfully processed. It MUST NOT be used to carry information about
error information belonging to header entries. Detailed error information belonging to header entries MUST be carried within
header entries. The absence of the detai | element in the Faul t element indicates that the fault is not related to processing of the
Body element. This can be used to distinguish whether the Body element was processed or not in case of a fault situation. All
immediate child elements of the detail element are called detail entries and each detail entry is encoded as an independent
element within the det ai | element.

<xs: schema xnl ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns:tns="http://schemas. xm soap. or g/ soap/ envel ope/ "
t ar get Nanmespace="htt p: // schemas. xnm soap. or g/ soap/ envel ope/ " >

<xs: conpl exType nane="detail ">
<xs: sequence>
<xs:any nanespace="##any" m nCccurs="0" maxQOccurs="unbounded" processContents="|ax"
/>
</ xs: sequence>
<xs:anyAttribute namespace="##any" processContents="|ax" />
</ xs: conpl exType>

file:///D|/workspace/wsd-guide/wsd-guide.html (26 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

</ xs: schema>

The encoding rules for detail entries are as follows:

a. A detail entry is identified by its fully qualified element name, which consists of the namespace URI and the local name.
Immediate child elements of the det ai | element MAY be namespace-qualified.
b. The SOAP encodi ngSt yl e attribute MAY be used to indicate the encoding style used for the detail entries

The f aul t code values MUST be used in the f aul t code element when describing faults. The namespace identifier for these f aul t code
values is "htt p: / / schemas. xm soap. or g/ soap/ envel ope/ ". The default SOAP f aul t code values are defined in an extensible manner
that allows for new SOAP faultcode values to be defined while maintaining backwards compatibility with existing f aul t code values. The
mechanism used is very similar to the 1xx, 2xx, 3xx etc basic status classes classes defined in HTTP. However, instead of integers, they
are defined as XML qualified names. The character "." (dot) is used as a separator of f aul t code values indicating that what is to the left
of the dot is a more generic fault code value than the value to the right. Example:

Client.Authentication

NOTE: WS-1 BP 1.0 PROHIBITS the use of "dot" notation of f aul t code element.

The set of predefined f aul t code values is:

Table 2.2. SOAP Fault Codes

Error Description
Ver si onM smat ch | The processing party found an invalid namespace for the SOAP Envel ope element.

An immediate child element of the SOAP Header element that was either not understood or not obeyed by the

Must Under st and . . : ;
s erstan processing party contained a SOAP nust Under st and attribute with a value of "1".

The d i ent class of errors indicate that the message was incorrectly formed or did not contain the appropriate
Client information in order to succeed. For example, the message could lack the proper authentication or payment
information. It is generally an indication that the message should not be resent without change.

The Server class of errors indicate that the message could not be processed for reasons not directly
attributable to the contents of the message itself but rather to the processing of the message. For example,
processing could include communicating with an upstream processor, which didn't respond. The message may
succeed at a later point in time.

Server

NOTE: WS-1 BP 1.0 ALLOWS using of custom values of f aul t code element. In this case they MUST be fully qualified:

<faul t code>ns1: Processi ngError</faultcode>

Using SOAP in HTTP

Binding SOAP to HTTP provides the advantage of being able to use the formalism and decentralized flexibility of SOAP with the rich
feature set of HTTP. Carrying SOAP in HTTP does not mean that SOAP overrides existing semantics of HTTP but rather that the semantics
of SOAP over HTTP maps naturally to HTTP semantics.

SOAP naturally follows the HTTP request/response message model providing SOAP request parameters in a HTTP request and SOAP
response parameters in a HTTP response. Note, however, that SOAP intermediaries are NOT the same as HTTP intermediaries. That is,
an HTTP intermediary addressed with the HTTP Connecti on header field cannot be expected to inspect or process the SOAP entity body
carried in the HTTP request.

HTTP applications MUST use the media type "t ext / xml " when including SOAP entity bodies in HTTP messages.

The SOAPAct i on HTTP request header field can be used to indicate the intent of the SOAP HTTP request. The value is a URI identifying
the intent. SOAP places no restrictions on the format or specificity of the URI or that it is resolvable. An HTTP client MUST use this
header field when issuing a SOAP HTTP Request.

The presence and content of the SOAPAct i on header field can be used by servers such as firewalls to appropriately filter SOAP request
messages in HTTP. The header field value of empty string (") means that the intent of the SOAP message is provided by the HTTP
Request-URI. No value means that there is no indication of the intent of the message. Examples:

CORRECT:

file://ID|/workspace/wsd-guide/wsd-guide.html (27 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

CORRECT (empty quoted string):

INCORRECT (SQAPAct i on value MUST be a quoted string):

SOAP HTTP follows the semantics of the HTTP Status codes for communicating status information in HTTP. For example, for a two-way
operations a 2xx status code indicates that the client's request including the SOAP component was successfully received, understood,
and accepted etc. In case of a SOAP error while processing the request, the SOAP HTTP server MUST issue an HTTP 500 "Internal Server
Error" response and include a SOAP message in the response containing a SOAP Faul t element indicating the SOAP processing error (for
two-way operations only).

Below is an example of HTTP request, successful response and fault response of simple Web Service for retrieving Quote information.

Quote SOAP HTTP request:

NOTE: WS-1 BP 1.0 MANDATES the use of HTTP POST method for SOAP messages sending.

Quote SOAP HTTP successful response:

file:///D|/workspace/wsd-guide/wsd-guide.html (28 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >
<SOAP- ENV: Body>
<nsl: get Quot eResponse xm ns: ns1="http://tenpuri.org/ St ockQuot eService"
SQAP- ENV: encodi ngSt yl e="htt p://schenmas. xm soap. or g/ soap/ encodi ng/ " >
<return xsi:type="xsd: fl oat">93. 12</ret urn>
</ nsl: get Quot eResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Quote SOAP HTTP fault response (exception is thrown by service endpoint object):

HTTP/ 1.1 500 Internal Server Error

Server: WebSphere Application Server/5.1

Expires: Thu, 01 Dec 1994 16: 00: 00 GMIT

Set - Cooki e: JSESSI ONl D=0000XEt Xnz75hl - - bFdY49XCHGU: - 1; Pat h=/
Cache- Control : no-cache="set-cooki e, set - cooki e2"

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schenmas. xnl soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="htt p: / / www. W3. or g/ 2001/ XM_Schema" >
<SCQAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Ser ver </ f aul t code>
<faul tstring>Excepti on from service object: null</faultstring>
<faul tact or >/ St ockQuot eProj / servl et/ rpcrout er</faul tactor>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example of SOAP HTTP request Using POST with a Mandatory Header:

PCOST / St ockQuote HTTP/ 1.1

Host: www. st ockquot eserver.com

Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: nnnn

SOAPAct i on: " Sone- URI "

<SOAP- ENV: Envel ope xnl ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
SOAP- ENV: encodi ngStyl e="ht t p: // schemas. xm soap. or g/ soap/ encodi ng/ "/ >
<SQAP- ENV: Header >
<t:Transacti on xm ns:t="sonme-URl " SOAP- ENV: nust Under st and="1">
12345
</t:Transaction>
</ SOAP- ENV: Header >
<SCQAP- ENV: Body>
<m Get Last TradePri ce xm ns: n=" Sone- URI " >
<synbol >DEF</ synbol >
</ m Get Last Tr adePri ce>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example of SOAP HTTP request Using POST with multiple request parameters:

PCOST / St ockQuote HTTP/ 1.1

Host: www. st ockquot eserver.com

Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: nnnn

SOAPAct i on: " Sone- URI "

<SOAP- ENV: Envel ope xnl ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
SQAP- ENV: encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ "/ >

file:///D|/workspace/wsd-guide/wsd-guide.html (29 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

<SCQAP- ENV: Body>
<m Cet Last TradePri ceDet ai | ed xm ns: n=" Sone- URI " >
<Synbol >I B\W&/ Synbol >
<Conpany>| BM Cor p</ Conpany>
</ m Get Last Tr adePri ceDet ai | ed>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example of SOAP HTTP response with a Mandatory Header:

HTTP/ 1.1 200 K
Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: nnnn

<SQOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schenmas. xnl soap. or g/ soap/ envel ope/ "
SOAP- ENV: encodi ngSt yl e="htt p: // schenas. xm soap. or g/ soap/ encodi ng/ "/ >
<SOAP- ENV: Header >
<t:Transacti on xm ns:t="sonme-URI " xsi:type="xsd:int" nustUnderstand="1">
12345
</t:Transaction>
</ SOAP- ENV: Header >
<SOAP- ENV: Body>
<m Get Last Tr adePri ceResponse xml ns: m=" Sonme- URIl " >
<Price>134. 5</ Price>
</ m Get Last Tr adePri ceResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example of SOAP HTTP response with a Struct:

HTTP/ 1.1 200 OK
Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: nnnn

<SQOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schenmas. xnl soap. or g/ soap/ envel ope/ "
SQOAP- ENV: encodi ngSt yl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ "/ >
<SCQAP- ENV: Body>
<m Get Last Tr adePri ceResponse xmnl ns: m=" Sone- URIl " >
<Pri ceAndVol une>
<Last Tr adePri ce>
134.5
</ Last TradePri ce>
<Day Vol une>
10000
</ Day Vol unme>
</ Pri ceAndVol ume>
</ m Get Last Tr adePri ceResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example of SOAP HTTP response Failing to honor Mandatory Header:

HTTP/ 1.1 500 Internal Server Error
Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: nnnn

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schenas. xnl soap. or g/ soap/ envel ope/ "
SOAP- ENV: encodi ngSt yl e="htt p: // schenas. xm soap. or g/ soap/ encodi ng/ "/ >
<SQAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Must Under st and</ f aul t code>
<faul tstri ng>SOAP Miust Understand Error</faultstring>
</ SOAP- ENV: Faul t >

file:///D|/workspace/wsd-guide/wsd-guide.html (30 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example of SOAP HTTP response Failing to handle Body:

HTTP/ 1.1 500 Internal Server Error
Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: nnnn

<SQOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schenas. xnl soap. or g/ soap/ envel ope/ "
SOAP- ENV: encodi ngSt yl e="htt p: // schenmas. xm soap. or g/ soap/ encodi ng/ "/ >
<SQOAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Ser ver </ f aul t code>
<faul tstring>Server Error</faultstring>
<det ai | >
<e: myfaul tdetails xm ns: e="Sone- URl ">
<nessage>
My application didn't work
</ message>
<errorcode>
1001
</ errorcode>
</e:nyfaul tdetail s>
</ detai | >
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Create a SOAP message that contains an attachment.

The SOAP with Attachments API for Java (SAAJ) provides a standard way to send XML documents over the Internet from the Java
platform. It is based on the SOAP 1.1 and SOAP with Attachments specifications, which define a basic framework for exchanging XML
messages.

The process of creation and sending SOAP message includes following steps:

. Creating a SOAP connection

. Creating a SOAP message

. Populating the message

. Sending the message
Retrieving the reply

A SAAJ client is a standalone client. That is, it sends point-to-point messages directly to a Web service that is implemented for request-
response messaging. Request-response messaging is synchronous, meaning that a request is sent and its response is received in the
same operation. A request-response message is sent over a SOAPConnect i on object via the method SOAPConnecti on. cal | , which sends
the message and blocks until it receives a response. A standalone client can operate only in a client role, that is, it can only send
requests and receive their responses.

A SOAPMessage object represents an XML document that is a SOAP message. A SOAPMessage object always has a required SOAP part,
and it may also have one or more attachment parts. The SOAP part must always have a SOAPEnvel ope object, which must in turn always
contain a SOAPBody object. The SOAPEnvel ope object may also contain a SOAPHeader object, to which one or more headers can be
added.

A SOAPMessage object represents an XML document that is a SOAP message. A SOAPMessage object always has a required SOAP part,
and it may also have one or more attachment parts. The SOAP part must always have a SOAPEnvel ope object, which must in turn always
contain a SOAPBody object. The SOAPEnvel ope object may also contain a SOAPHeader object, to which one or more headers can be
added.

The SOAPBody object can hold XML fragments as the content of the message being sent. If you want to send content that is not in XML
format or that is an entire XML document, your message will need to contain an attachment part in addition to the SOAP part. There is
no limitation on the content in the attachment part, so it can include images or any other kind of content, including XML fragments and
documents. Common types of attachment include sound, picture, and movie data: .mp3, .jpg, and .mpg files.

The first thing a SAAJ client needs to do is get a connection in the form of a SOAPConnect i on object. A SOAPConnect i on object is a point-
to-point connection that goes directly from the sender to the recipient. The connection is created by a SOAPConnect i onFact ory object. A
client obtains the default implementation for SOAPConnect i onFact ory by calling the following line of code:

file:///D|/workspace/wsd-guide/wsd-guide.html (31 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

SCQAPConnect i onFactory factory = SOAPConnecti onFact ory. newl nst ance() ;

The client can use f act ory to create a SOAPConnect i on object.

SCQAPConnecti on connection = factory. createConnection();

Messages, like connections, are created by a factory. To obtain a MessageFact ory object, you get an instance of the default
implementation for the MessageFact ory class. This instance can then be used to create a SOAPMessage object:

MessageFact ory nessageFactory = MessageFactory. newl nstance();
SOAPMessage nessage = nessageFactory. creat eMessage();

All of the SOAPMessage objects that messageFact ory creates, including message in the previous line of code, will be SOAP messages.
This means that they will have no pre-defined headers. The new SOAPMessage object message automatically contains the required
elements SOAPPart , SOAPEnvel ope, and SOAPBody, plus the optional element SOAPHeader (which is included for convenience). The
SOAPHeader and SOAPBody objects are initially empty, and the following sections will illustrate some of the typical ways to add content.
Content can be added to the SOAPPart object, to one or more Att achnent Part objects, or to both parts of a message.

package j avax.xnl . soap;

public abstract class SOAPPart inplenents org.w3c.dom Docunent {
publi c abstract SOAPEnvel ope get Envel ope() throws SOAPExcepti on;

As stated earlier, all messages have a SOAPPart object, which has a SOAPEnvel ope object containing a SOAPHeader object and a
SOAPBody object.

package j avax. xnl . soap;

public interface SOAPEnvel ope extends SOAPEl ement {
public abstract Name createNane(String |ocal Name, String prefix, String uri)
t hrows SOAPExcepti on;
public abstract Nane createName(String | ocal Nane) throws SOAPExcepti on;
public abstract SOAPHeader getHeader () throws SOAPExcepti on;
publ i c abstract SOAPHeader addHeader () throws SOAPExcepti on;
public abstract SOAPBody getBody() throws SOAPExcepti on;
public abstract SOAPBody addBody() throws SOAPExcepti on;

One way to add content to the SOAP part of a message is to create a SOAPHeader El ement object or a SOAPBodyEl ement object and add
an XML fragment that you build with the method SOAPEI enent . addText Node. The first three lines of the following code fragment access
the SOAPBody object body, which is used to create a new SOAPBodyEl enent object and add it to body. The argument passed to the

cr eat eNane method is a Nane object identifying the SOAPBodyEl enent being added. The last line adds the XML string passed to the
method addText Node:

SOAPPart soapPart = nmessage. get SOAPPart ();
SOAPEnvel ope envel ope = soapPart. get Envel ope();
SCAPBody body = envel ope. get Body() ;
SOAPBodyEl enent bodyEl enent = body. addBodyEl enment (
envel ope. creat eNane("text", "hotitens",
"http://hotitens.conl products/giznm");
bodyEl enent . addText Node(" sonme- xm -text ") ;

Another way is to add content to the SOAPPart object by passing it a j avax. xm . t ransf or m Sour ce object, which may be a SAXSour ce,
DOVBour ce, or St r eanfSour ce object. The Sour ce object contains content for the SOAP part of the message and also the information
needed for it to act as source input. A St reanSour ce object will contain the content as an XML document; the SAXSour ce or DOMSour ce
object will contain content and instructions for transforming it into an XML document.

The following code fragments illustrates adding content as a DOVBour ce object. The first step is to get the SOAPPart object from the
SOAPMessage object. Next the code uses methods from the JAXP API to build the XML document to be added. It uses a

Docunent Bui | der Fact ory object to get a Docunent Bui | der object. Then it parses the given file to produce the document that will be
used to initialize a new DOVSour ce object. Finally, the code passes the DOVBour ce object donSour ce to the method

file:///D|/workspace/wsd-guide/wsd-guide.html (32 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

SCOAPPart . set Cont ent :

SOAPPart soapPart = nessage. get SOAPPart ();

Docunent Bui | der Fact ory dbFact ory = Docunent Bui | der Fact ory. newl nst ance() ;
Docurent Bui | der bui |l der = dbFact ory. newbDocunent Bui | der () ;

Docunment docunment = buil der.parse("file:///foo.bar/soap.xm");

DOVBour ce donmBSour ce = new DOMSour ce(docunent) ;

soapPart . set Cont ent (donSour ce) ;

This code would work equally well with a SAXSour ce or a St r eanSour ce object.

You use the set Cont ent method when you want to send an existing SOAP message. If you have an XML document that you want to
send as the content of a SOAP message, you use the addDocunent method on the body of the message:

SOAPBodyEl enent docEl ement = body. addDocunent (docunent) ;

This allows you to keep your application data in a document that is separate from the SOAP envelope unless and until it is time to send
that data as a message.

A SOAPMessage object may have no attachment parts, but if it is to contain anything that is not in XML format, that content must be
contained in an attachment part. There may be any number of attachment parts, and they may contain anything from plain text to
image files. In the following code fragment, the content is an image in a JPEG file, whose URL is used to initialize the

javax. acti vati on. Dat aHandl er object handler. The Message object message creates the At t achnent Part object at t achPart, which is
initialized with the data handler containing the URL for the image. Finally, the message adds att achPart to itself:

URL url = new URL("http://foo.bar/ing.jpg");

Dat aHandl er handl er = new Dat aHandl er (url);

Attachnent Part attachPart = nmessage. createAttachnent Part (handl er);
nmessage. addAt t achnment Part (attachPart);

A SOAPMessage object can also give content to an At t achnment Part object by passing an Obj ect and its content type to the method
createAttachment Part :

Attachnent Part attachPart = nmessage. createAttachnment Part (
"content-string", "text/plain");
nessage. addAt t achnent Part (attachPart);

Once you have populated a SOAPMessage object, you are ready to send it. A client uses the SOAPConnecti on method cal | to send a
message. This method sends the message and then blocks until it gets back a response. The arguments to the method cal | are the
message being sent and a URL object that contains the URL specifying the endpoint of the receiver.

SOAPMessage response = soapConnection. cal | (message, endpoint);

The following example shows a SOAP 1.1 message with an attached facsimile image of the signed claim form (claimtiff), also it
illustrates the use of the ci d reference in the body of the SOAP 1.1 message:

M ME-Version: 1.0

Cont ent - Type: Ml ti part/Rel at ed; boundary=M ME_boundary; type=text/xmn ;
start="<cl ai m xm @l ai m ng-it.conp"

Cont ent - Description: This is the optional nmessage description.

--M ME_boundary

Cont ent - Type: text/xm; charset=UTF-8
Cont ent - Tr ansf er - Encodi ng: 8bi t
Content-1D: <claimxm @l ainmng-it.conp

<?xm version='1.0" ?>
<SOAP- ENV: Envel ope xml ns: SOAP- ENV="htt p: / / schemas. xnl soap. or g/ soap/ envel ope/ " >
<SQOAP- ENV: Body>

<t heSi gnedForm href="cid:claimtiff@laimng-it.con/>

</ SOAP- ENV: Body>

file:///D|/workspace/wsd-guide/wsd-guide.html (33 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

</ SOAP- ENV: Envel ope>

--M ME_boundary

Cont ent - Type: image/tiff

Cont ent - Tr ansf er - Encodi ng: bi nary
Content-ID: <claimtiff@laimng-it.conmr

d3d3LmLhcmNoYWw Y29t aesgf SEVFES45345sdvgf szd==
--M ME_boundary- -

NOTE: In this example the "Cont ent - Type" header line has been continued across two lines so the example prints easily. SOAP message
senders should send headers on a single long line.

NOTE: Associate the attachment to t heSi gnedFor melement by adding an hr ef attribute. The attachment is referred to through a ci d
(Cont ent -1 D) URL:

<nyEl ement href="ci d: xxxx" />

--M ME_boundary

Cont ent - Type: i mage/tiff

Cont ent - Tr ansf er - Encodi ng: bi nary
Content-1D: <XXXX>

NOTE: Unlike SOAP 1.1 XML references, do not use '#' (pound sign) in hr ef attribute value when you refer to attachment, also when you
refer to attachment you must prepend unique identifier with prefix 'ci d: .

The following listing illustrates the creation of the SOAP request. The request asks a server to resize an image. The procedure is as

follows:
1. Create SOAP connection and SOAP message objects through factories.
2. Retrieve the message body from the message object (intermediary steps: retrieve the SOAP part and envelope).
3. Create a new XML element to represent the request.
4. Create the attachment and initialize it with a Dat aHandl er object.
5. Create more elements to represent the two parameters (sour ce and per cent).
6. Associate the attachment to the first parameter by adding an hr ef attribute. The attachment is referred to through a ci d

(Content -1 D) URI.
7. Set the value of the second parameter directly as text and call the service.

The service replies with the resized image, again as an attachment. To retrieve it, you can test for a SOAP fault (which indicates an
error). If there are no faults, retrieve the attachment as a file and process it. Using SAAJ API:

/1 Using SAAJ

public File resize(String endPoint,File file) {
SOAPConnect i on connecti on = SOAPConnecti onFact ory. newl nst ance(). creat eConnection();
SCAPMessage nessage = MessageFactory. newl nstance(). creat eMessage() ;
SCAPPart part = nessage. get SOAPPart ();
SOAPEnvel ope envel ope = part.get Envel ope();
SCAPBody body = envel ope. get Body() ;
SOAPBodyEl enent operati on = body. addBodyEl enent (
envel ope. creat eNane("resi ze", "ps", "http://exanple.cont));
Dat aHandl er dh = new Dat aHandl er (new Fi | eDat aSource(file));
Attachnent Part attachnent = nessage. creat eAttachnent Part (dh);
SOAPE!l enent source = operation.addChil dEl ement ("source",""),
SCOAPEl enent percent = operati on. addChil dEl ement (" percent","");
message. addAt t achnment Part (attachnment) ;
sour ce. addAttri but e(envel ope. creat eName("href"), "cid:" + attachnent.getContentld());
per cent . addText Node("20");

SOAPMessage result = connection. cal |l (nessage, endPoi nt);
part = result.get SOAPPart ();
envel ope = part.get Envel ope();
body = envel ope. get Body();
i f(!body. hasFault()) {
Iterator iterator = result.getAttachments();
if(iterator.hasNext()) {

file:///D|/workspace/wsd-guide/wsd-guide.html (34 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

dh = ((Attachnment Part)iterator.next()).getDataHandl er();
String fname = dh. get Name();
if (null !'= fpname) return new Fil e(fnane);
}
}

return null;

The code above will produce following SOAP 1.1 message with attachment:

PCST /ws/resize HTTP/ 1.0
Content-Type: nultipart/related; type="text/xm";
start =" <EB6FC7EDE9EF4E510F641C481A9FF1F3>" ;
boundary="----=_Part_0_7145370. 1075485514903"
Accept: application/soap+xml, nultipart/related, text/*
Host: exanpl e. com 8080
SOAPActi on: "*"
Cont ent - Lengt h: 1506005

------ = Part_0_7145370. 1075485514903

Cont ent - Type: text/xm ; charset=UTF-8

Cont ent - Tr ansf er - Encodi ng: bi nary

Content-1d: <EB6FC7EDE9EF4E510F641CA81A9FF1F3>

<?xm version="1.0" encodi ng="UTF-8"?>
<soapenv: Envel ope xml ns: soapenv="http://schenmas. xnl soap. or g/ soap/ envel ope/ "
xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<soapenv: Body>
<ps:resize xmns:ps="http://exanple.conl>
<source href="cid: ELA97E9D40359F85CA19D1B8A7C52AA3" / >
<per cent >20</ per cent >
</ ps:resize>
</ soapenv: Body>
</ soapenv: Envel ope>

------ = Part_0_7145370. 1075485514903

Cont ent - Type: i mage/|j peg

Cont ent - Tr ansf er - Encodi ng: bi nary

Content-1d: <E1A97E9D40359F85CA19D1B8A7C52AA3>

d3d3LmLhcmNoYWw Y29t aesgf SEVFES45345sdvgf szd==
------ = Part_0_7145370. 1075485514903- -

Describe the restrictions placed on the use of SOAP by the WS-I Basic Profile 1.0a.
BP 1.0 - Messaging - XML Representation of SOAP Messages.

When a MESSAGE contains a soap: Faul t element, that element MUST NOT have element children other than f aul t code, faul tstri ng,
faultactor and detail .

CORRECT:

<soap: Fault xm ns: soap=' http://schemas. xm soap. or g/ soap/ envel ope/' >
<faul t code>soap: C i ent </ f aul t code>
<faul tstring>l nvalid nmessage format</faultstring>
<faul tact or>http://exanpl e. or g/ soneact or </ f aul t act or >
<det ai | >
<m nsg xm ns: n¥' http://exanpl e. org/faul ts/exceptions'>
There were l ots of elenents in the nessage that | did not understand
</ m nmsg>
<m Exception xm ns: m=' http://exanpl e. org/faul ts/exceptions'>
<m Excepti onType>Sever e</ m Excepti onType>
</ m Except i on>
</ detail >
</ soap: Faul t >

file:///D|/workspace/wsd-guide/wsd-guide.html (35 of 171) [14.03.2006 14:39:44]

SCDJWS Study Guide

INCORRECT (not allowed child element inside Faul t):

When a MESSAGE contains a soap: Faul t element its element children MUST be unqualified.

CORRECT:

INCORRECT (child elements have nhamespace prefixes):

A RECEIVER MUST accept fault messages that have any number of ELEMENTS, including zero, appearing as children of the det ai |
element. Such children can be qualified or unqualified.

A RECEIVER MUST accept fault messages that have any number of qualified or unqualified ATTRIBUTES, including zero, appearing on the
detai | element. The namespace of qualified attributes can be anything other than "htt p: //schenas. xn soap. or g/ soap/ envel ope/ ".

A RECEIVER MUST accept fault messages that carry an xnl : | ang attribute on the f aul t stri ng element.

When a MESSAGE contains a f aul t code element the content of that element SHOULD be one of the fault codes defined in SOAP 1.1 or a
namespace qualified fault code.

SOAP 1.1 defines following f aul t code values:

Table 2.3. SOAP Fault Codes

file:///D|/workspace/wsd-guide/wsd-guide.html (36 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Error Description
Ver si onM smat ch | The processing party found an invalid namespace for the SOAP Envel ope element.

An immediate child element of the SOAP Header element that was either not understood or not obeyed by the
Must Under st and . . . : wqn
processing party contained a SOAP nust Under st and attribute with a value of "1".
The Client class of errors indicate that the message was incorrectly formed or did not contain the appropriate
dient information in order to succeed. For example, the message could lack the proper authentication or payment
information. It is generally an indication that the message should not be resent without change.

The Server class of errors indicate that the message could not be processed for reasons not directly attributable
to the contents of the message itself but rather to the processing of the message. For example, processing
could include communicating with an upstream processor, which didn't respond. The message may succeed at a
later point in time.

Server

When a MESSAGE contains a f aul t code element the content of that element SHOULD NOT use of the SOAP 1.1 "dot" notation to refine
the meaning of the Fault.

CORRECT (use of custom namespace qualified value):

<soap: Faul t xm ns: soap='http://schemas. xm soap. or g/ soap/ envel ope/"
xm ns: c="http://exanpl e. org/faul tcodes' >
<f aul t code>c: Processi ngError </ faul t code>
<faul tstring>An error occured while processing the nessage
</faul tstring>
</ soap: Faul t >

CORRECT (use of predefined SOAP 1.1 value):

<soap: Fault xm ns: soap=' http://schemas. xm soap. or g/ soap/ envel ope/' >
<f aul t code>soap: Server </ faul t code>
<faul tstring>An error occured while processing the nessage
</faul tstring>

</ soap: Faul t >

INCORRECT ("dot" notation):

<soap: Fault xm ns: soap=' http://schemas. xm soap. or g/ soap/ envel ope/"'
xm ns: c="http://exanpl e.org/faultcodes' >
<f aul t code>soap: Server . Processi ngError</faul t code>
<faultstring>An error occurred while processing the nessage
</faul tstring>
</ soap: Faul t >

A MESSAGE MUST NOT contain soap: encodi ngSt yl e attributes on any of the elements whose namespace name is
"http://schemas. xn soap. or g/ soap/ envel ope/ " .

A MESSAGE MUST NOT contain soap: encodi ngSt yl e attributes on any element that is a child of soap: Body.

A MESSAGE described in an rpc-literal binding MUST NOT contain soap: encodi ngSt yl e attribute on any elements are grandchildren of
soap: Body.

A MESSAGE MUST NOT contain a Document Type Declaration (DTD).

A MESSAGE MUST NOT contain Processing Instructions (PI).

A RECEIVER MUST accept messages that contain an XML Declaration.

A MESSAGE MUST NOT have any element children of soap: Envel ope following the soap: Body element.

CORRECT:

file:///D|/workspace/wsd-guide/wsd-guide.html (37 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<soap: Envel ope xm ns: soap="'http://schemas. xm soap. or g/ soap/ envel ope/"' >
<soap: Body>
<p: Process xnl ns: p='http://exanpl e. org/ Operati ons' >
<m Data xm ns: n¥' http://exanpl e. org/information' >
Here is sone data with the nmessage
</ m Dat a>
</ p: Process>
</ soap: Body>
</ soap: Envel ope>

INCORRECT (child elements after Body element):

<soap: Envel ope xml ns: soap=' http://schemas. xnm soap. or g/ soap/ envel ope/' >
<soap: Body>
<p: Process xm ns: p='http://exanpl e. org/ Operati ons' />
</ soap: Body>
<m Data xm ns: m' http://exanple.org/information' >
Here is sone data with the nessage
</ m Dat a>
</ soap: Envel ope>

A MESSAGE MUST be serialized as either UTF-8 or UTF-16.

The media type of a MESSAGE's envelope MUST indicate the correct character encoding, using the char set parameter.
A MESSAGE containing a soap: nust Under st and attribute MUST only use the lexical forms "0" and "1".

The children of the soap: Body element in a MESSAGE MUST be namespace qualified.

A RECEIVER MUST generate a fault if they encounter a message whose document element has a local name of "Envel ope" but a
namespace name that is not "htt p://schenas. xnl soap. or g/ soap/ envel ope/".

A RECEIVER MUST NOT mandate the use of the xsi : t ype attribute in messages except as required in order to indicate a derived type.

Describe the function of SOAP in a Web service interaction and the advantages and disadvantages of using SOAP
messages.

HTTP is a transport-level protocols and SOAP is a messaging-layer (communication) protocol. SOAP can be used in combination with a
variety of transport protocols - including SMTP, JMS, and other protocols in addition to HTTP - and does not depend on any particular
network protocol. Although HTTP is a widely used protocol for SOAP, SOAP toolkit vendors have also started providing support for other
protocols, like SMTP. SOAP messages may travel across several different transport-layer protocols before they reach their ultimate
destination

SOAP advantages.
. Platform independent.

SOAP decouples the encoding and communications protocol from the runtime environment. Web service can receive a SOAP
payload from a remote service, and the platform details of the source are entirely irrelevant.
Language independent.

Anything can generate XML, from Perl scripts to C++ code to J2EE app servers. So, as of the 1.1 version of the SOAP
specification, anyone and anything can participate in a SOAP conversation, with a relatively low barrier to entry.
. Uses XML to send and receive messages.

SOAP is also a simple way to accomplish remote object/component/service communications. It formalizes the vocabulary
definition in a form that's now familiar, popular, and accessible (XML). If you know XML, you can figure out the basics of SOAP
encoding pretty quickly.

. Uses standard internet HTTP protocol.

SOAP runs over HTTP, which eliminates firewall problems. When using HTTP as the protocol binding, an RPC call maps naturally to
an HTTP request and an RPC response maps to an HTTP response.

. SOAP is very simple compared to RMI, CORBA, and DCOM because it does not deal with certain ancillary but important aspects of
remote object systems.

. A protocol for exchanging information in a decentralized and distributed environment.

. SOAP is, transport protocol-independent and can therefore potentially be used in combination with a variety of protocols.
Vendor neutral.

file:///D|/workspace/wsd-guide/wsd-guide.html (38 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

SOAP disadvantages

The SOAP specification contains no mention of security facilities.

SOAP 1.1 specification does not specify a default encoding for the message body. There is an encoding defined in the spec, but it
is not required that you use this encoding to be compliant: Any custom encoding that you choose can be specified in the

encodi ngSt yl e attribute of the message or of individual elements in the message.

Because SOAP deals with objects serialized to plain text and not with stringified remote object references (interoperable object
references, I0Rs, as defined in CORBA), distributed garbage collection has no meaning.

SOAP clients do not hold any stateful references to remote objects.

Chapter 3. Describing and Publishing (WSDL and UDDI)

Explain the use of WSDL in Web services, including a description of WSDL's basic elements, binding mechanisms

and the basic WSDL operation types as limited by the WS-I Basic Profile 1.0a.

WSDL is an XML-based language that allows formal XML desriptions of the interfaces of Web services:

Interface information describing all publicly available functions.

Data type information for all message requests and message responses.
Binding information about the transport protocol to be used.

Address information for locating the specified service.

WSDL benefits:

It is an interface description is a contract between the server developers and the client developers (like Java interface represents
a contract between client code and the actual Java object).

It has formal descriptions which allows tool support, e.g. code template generators, integrate new services with little or no manual
code.

WSDL language can be described as having two layers:

1.

2.

The service definition layer describes abstract properties:

. data types

. message types
. operations

. services

The binding layer describes concrete properties:

. protocols
. data formats

The defi ni ti ons element MUST be the root element of all WSDL documents. It defines the name of the web service, declares multiple
namespaces used throughout the remainder of the document. An actual WSDL document consists of a set of defi ni ti ons of the
following kinds:

types - Contains XML Schema element and type definitions. The t ypes element describes all the data types used between the
client and server. WSDL is not tied exclusively to a specific typing system, but it uses the W3C XML Schema specification as its
default choice. If the service uses only XML Schema built-in simple types, such as strings and integers, the t ypes element is not
required.

message - Consistes of either a number of named part s typed by XML Schema elements, or a single part typed by a XML Schema
type. The nessage element describes a one-way message, whether it is a single message request or a single message response.
It defines the name of the message and contains zero or more message part elements, which can refer to message parameters
or message return values.

port Type - describing a set of oper at i ons, each being either:

o one-way: The endpoint receives an i nput message. (NOTE: The WS-I BP 1.0 restricts the valid wsdl : oper at i ons to one-
way and request-response operations).

<wsdl : definitions >
<wsdl : port Type > *
<wsdl| : operati on nane="nnt oken" >
<wsdl : i nput nanme="nnt oken"? message="qgnane"/ >
</ wsdl : oper ati on>
</ wsdl : port Type >
</wsdl : definitions>

file://ID|/workspace/wsd-guide/wsd-guide.html (39 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

o request-response: The endpoint receives an i nput message and then responds with an out put message (like RPC -
Remote Procedure Call). (NOTE: The WS-I BP 1.0 restricts the valid wsdl : oper ati ons to one-way and request-response
operations).

<wsdl : definitions >
<wsdl : port Type > *
<wsdl : oper ati on nane="nnt oken" paraneter O der =" nnt okens" >
<wsdl : i nput nane="nnt oken"? nmessage="gnane"/ >
<wsdl : out put nane="nnt oken"? nessage="gnane"/>
<wsdl : faul t name="nnt oken" nessage="qnane"/>*
</ wsdl : oper ati on>
</ wsdl : port Type >
</wsdl : definitions>

o solicit-response: The endpoint sends an out put message and then receives an i nput message (NOTE: A DESCRIPTION
MUST NOT use Sol i cit - Response and Noti fi cati on type operations in a wsdl : port Type definition - R2303 - BP 1.0).

<wsdl : definitions >
<wsdl| : port Type > *
<wsdl| : operati on name="nnt oken" paraneter O der =" nnt okens" >
<wsdl| : out put nane="nnt oken"? nessage="gnane"/>
<wsdl : i nput nanme="nnt oken"? message="qgnane"/ >
<wsdl : faul t name="nnt oken" nessage="qnane"/>*
</ wsdl : oper ati on>
</wsdl : port Type >
</wsdl : definitions>

o notification: The endpoint sends an out put message (NOTE: A DESCRIPTION MUST NOT use Sol i ci t - Response and
Noti fi cati on type operations in a wsdl : port Type definition - R2303 - BP 1.0).

<wsdl : definitions >
<wsdl : port Type > *
<wsdl| : operati on name="nnt oken" paraneter O der =" nnt okens" >
<wsdl : out put nane="nnt oken"? nessage="gnane"/>
</ wsdl : oper ati on>
</wsdl : port Type >
</wsdl : definitions>

The port Type element combines multiple nessage elements to form a complete one-way or round-trip operation. For example, a
port Type can combine one request and one response message into a single request/response operation, most commonly used in
SOAP services. Note that a port Type can (and frequently does) define multiple oper ati ons.

. bindi ng - Selects communication protocol and data formats for each oper ati on and nessage. The bi ndi ng element describes the
concrete specifics of how the service will be implemented on the wire. WSDL includes built-in extensions for defining SOAP
services, and SOAP-specific information therefore goes here. (NOTE: For interoperability the WS-1 BP 1.0 requires that all
messages must be sent using the SOAP 1.1 protocol over an HTTP transport as described in Section 3 of the WSDL 1.1 spec. The
SOAP messages must be in either "document-literal” or "rpc-literal” form). The WS-1 BP 1.0 requires that a wsdl : bi ndi ng and its
wsdl : port Type have the same list of wsdl : oper ati ons. A perfect matching between the two lists is established through a 1-1 and
onto relation from the wsdl : bi ndi ng to the wsdl : port Type. The wsdl : bi ndi ng should completely bind all operations within a
wsdl : port Type.

. service - Describes a collection of named port s, each associated with a binding and a network address. The servi ce element
defines the address for invoking the specified service. Most commonly, this includes a URL for invoking the SOAP service.

The simplified structure of a WSDL document is:

<definitions> <!-- root WSDL el enent -->
<types>
<!-- defines data types to be transmtted -->
</types>
<nmessage>

file:///D|/workspace/wsd-guide/wsd-guide.html (40 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

WSDL document grammar:

file:///D|/workspace/wsd-guide/wsd-guide.html (41 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<wsdl : servi ce nanme="nnt oken"> *

<wsdl : docunentation />?
<wsdl : port nane="nnt oken" bi ndi ng="gnane"> *
<wsdl : docunentation /> ?

<-- extensibility element -->
</ wsdl : port >
<-- extensibility element -->
</ wsdl : servi ce>

<-- extensibility element --> *

</ wsdl : definitions>

Example of simple WSDL (SOAP 1.1 Request-Response via HTTP):

<?xm version="1.0" encodi ng="UTF-8"?>
<defi niti ons nane="St ockQuot e"

t ar get Nanmespace="htt p: // exanpl e. com st ockquot e. wsdl "
xm ns:tns="http://exanpl e. conl st ockquot e. wsdl "
xm ns: xsd1="htt p:// exanpl e. conf st ockquot e. xsd"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xm soap. or g/ wsdl /">

<t ypes>
<schenm t ar get Nanmespace="htt p: // exanpl e. conl st ockquot e. xsd"
xm ns="http://ww. w3. or g/ 2000/ 10/ XM_Schena" >
<el enent nane="TradePri ceRequest ">
<conpl exType>
<al | >
<el ement nanme="ticker Synbol " type="string"/>
</all>
</ conpl exType>
</ el ement >
<el ement nanme="TradePrice">
<conpl exType>
<al | >
<el ement nanme="price" type="float"/>
</all>
</ conpl exType>
</ el ement >
</ schema>
</types>

<message nane="Get Last Tr adePri cel nput">
<part nane="body" el enment ="xsd1: Tr adePri ceRequest "/ >
</ message>

<nessage nane="Get Last Tr adePri ceCut put ">
<part nanme="body" el ement="xsdl: TradePrice"/>
</ nessage>

<port Type nane="St ockQuot ePort Type" >
<oper ati on nane="Cet Last Tr adePri ce">
<i nput nmessage="tns: Get Last TradePri cel nput"/>
<out put nessage="tns: Get Last Tr adePri ceQut put "/ >
</ oper ati on>
</ port Type>

<bi ndi ng nanme=" St ockQuot eSoapBi ndi ng" type="tns: St ockQuot ePort Type" >
<soap: bi ndi ng styl e="docunent" transport="http://schenmas. xm soap. org/ soap/ http"/>
<oper ati on nane="Cet Last TradePri ce">
<soap: oper ati on soapAction="http://exanpl e. conf Get Last Tr adePri ce"/ >
<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ oper ati on>

file:///D|/workspace/wsd-guide/wsd-guide.html (42 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

</ bi ndi ng>

<servi ce nanme="St ockQuot eServi ce">
<docurent ati on>My first service</docunentation>
<port nane="St ockQuot ePort" bi ndi ng="tns: St ockQuot eBi ndi ng" >
<soap: address | ocation="http://exanpl e. conl st ockquot e"/>
</ port>
</ servi ce>

</definitions>

Describe how W3C XML Schema is used as a typing mechanism in WSDL 1.1.

The t ypes element encloses data type definitions that are relevant for the exchanged messages. For maximum interoperability and
platform neutrality, WSDL prefers the use of XSD as the canonical type system, and treats it as the intrinsic type system.

<definitions >
<types>
<xsd:schema [>*
</types>

</definitions>

The XSD type system can be used to define the types in a message regardless of whether or not the resulting wire format is actually
XML, or whether the resulting XSD schema validates the particular wire format. This is especially interesting if there will be multiple
bindings for the same message, or if there is only one binding but that binding type does not already have a type system in widespread
use.

A DESCRIPTION MUST NOT use QName references to elements in namespaces that have been neither imported, nor defined in the
referring WSDL document.

A QName reference to a Schema component in a DESCRIPTION MUST use the namespace defined in the t ar get Nanespace attribute on
the xsd: schenma element, or to a namespace defined in the namespace attribute on an xsd: i nport element within the xsd: schena
element.

All xsd: schenma elements contained in a wsdl : t ypes element of a DESCRIPTION MUST have a t ar get Namespace attribute with a valid
and non-null value, UNLESS the xsd: schema element has xsd: i nport and/or xsd: annot at i on as its only child element(s).

In a DESCRIPTION, array declarations MUST NOT extend or restrict the soapenc: Array type.

In a DESCRIPTION, array declarations MUST NOT use wsdl : arrayType attribute in the type declaration.

In a DESCRIPTION, array declaration wrapper elements SHOULD NOT be named using the convention Arr ay Of XXX.
A MESSAGE containing serialized arrays MUST NOT include the soapenc: arrayType attribute.

CORRECT:

Given the WSDL Description:

<xsd: el enrent name="M/Arrayl" type="tns: M/ArraylType"/>
<xsd: conpl exType nanme="MArraylType">
<xsd: sequence>
<xsd: el enent nanme="x" type="xsd:string" m nCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>

The SOAP message would serialize as (omitting namespace declarations for clarity):

<MW/Arrayl>
<x>abcd</ x>
<x>ef gh</ x>

</ WArrayl>

file:///D|/workspace/wsd-guide/wsd-guide.html (43 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

INCORRECT (uses soapenc: arrayType attribute and soapenc: Array type):

Given the WSDL Description:

The SOAP message would serialize as (omitting namespace declarations for clarity):

Describe the use of UDDI data structures. Consider the requirements imposed on UDDI by the WS-I Basic Profile
1.0a.

UDDI supports the following core data structures:

Business Entity
Business Service
Binding Template
tModel

Publisher Assertion

apoNE

This division by information type provides simple partitions to assist in the rapid location and understanding of the different information
that makes up a registration.

file:///D|/workspace/wsd-guide/wsd-guide.html (44 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

blish - Information about a relationship AN
publisherAssertion between two parties, asserted by
1.n one of both
2
. . Information about the party who AN
businessEntity publishes information about a
1 family of services
1..n
busi Servi Descriptive information about a AN
usinessservice particular service
1
1..n
bindinaTemol Technical information about a s
L EL s service entry point and
1.n construction specs
1.n
tModel Descriptions of specifications for
services or taxonomies. Basis for

technical fingerprints

The busi nessEntity structure

The busi nessEnti ty structure represents all known information about a business or entity that publishes descriptive information about
the entity as well as the services that it offers. From an XML standpoint, the busi nessEnti ty is the top-level data structure that
accommodates holding descriptive information about a business or entity. Service descriptions and technical information are expressed
within a busi nessEnt ity by a containment relationship.

Structure Specification:

<el ement nanme="busi nessEntity" type="uddi: busi nessEntity" />

<conpl exType nanme="busi nessEntity">

<sequence>
<el ement ref="uddi: di scoveryURLs" m nCccurs="0" />
<el ement ref="uddi: name" maxCccurs="unbounded" />
<el ement ref="uddi:description" m nCccurs="0" maxCccurs="unbounded" />
<el ement ref="uddi:contacts" m nCccurs="0" />
<el ement ref="uddi : busi nessServi ces" m nCccurs="0" />
<el ement ref="uddi:identifierBag" m nCccurs="0" />
<el ement ref="uddi : cat egoryBag" m nCccurs="0" />

</ sequence>

<attribute name="busi nessKey" type="uddi : busi nessKey" use="required" />
<attribute nane="operator" type="string" use="optional" />
<attribute nane="aut hori zedNane" type="string" use="optional" />

</ conpl exType>

The busi nessSer vi ces structure provides a way for describing information about families of services. This simple collection accessor
contains zero or more busi nessSer vi ce structures and has no other associated structures.

The i denti fi er Bag element allows busi nessEntity or t Model structures to include information about common forms of identification
such as D-U-N-S numbers, tax identifiers, etc. This data can be used to signify the identity of the busi nessEntity, or can be used to
signify the identity of the publishing party. Including data of this sort is optional, but when used greatly enhances the search behaviors
exposed via the fi nd_xx messages defined in the UDDI Version 2.0 API Specification.

file://ID|/workspace/wsd-guide/wsd-guide.html (45 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

The cat egor yBag element allows busi nessEntity, busi nessServi ce and t Model structures to be categorized according to any of
several available taxonomy based classification schemes. Operator Sites automatically provide validated categorization support for three
taxonomies that cover industry codes (via NAICS), product and service classifications (via UNSPC) and geography (via ISO 3166).
Including data of this sort is optional, but when used greatly enhances the search behaviors exposed by the fi nd_xx messages defined
in the UDDI Version 2.0 API Specification.

The busi nessServi ce structure

The busi nessSer vi ce structures each represent a logical service classification. The name of the element includes the term "business" in
an attempt to describe the purpose of this level in the service description hierarchy. Each busi nessSer vi ce structure is the logical child
of a single busi nessEntity structure. The identity of the containing (parent) busi nessEnti ty is determined by examining the
embedded busi nessKey value. If no busi nessKey value is present, the busi nessKey must be obtainable by searching for a busi nessKey
value in any parent structure containing the busi nessServi ce. Each busi nessSer vi ce element contains descriptive information in
business terms outlining the type of technical services found within each busi nessSer vi ce element.

In some cases, businesses would like to share or reuse services, e.g. when a large enterprise publishes separate busi nessEntity
structures. This can be established by using the busi nessSer vi ce structure as a projection to an already published busi nessServi ce.

Any busi nessServi ce projected in this way is not managed as a part of the referencing busi nessEnti ty, but centrally as a part of the
referenced busi nessEnti ty. This means that changes of the busi nessSer vi ce by the referenced busi nessEntity are automatically
valid for the service projections done by referencing busi nessEnti ty structures.

In order to specify both referenced and referencing busi nessEnti ty structures correctly, service projections can only be published by a
save_busi ness message with the referencing busi nessKey present in the busi nessEnti ty structure and both the referenced
busi nessKey and the referenced busi nessSer vi ce present in the busi nessServi ce structure.

Structure Specification:

<el ement nane="busi nessServi ce" type="uddi: busi nessService" />

<conpl exType nanme="busi nessService">
<sequence>
<el ement ref="uddi:name" m nCccurs="0" maxCccurs="unbounded" />
<el ement ref="uddi:description" m nQccurs="0" maxCccur s="unbounded" />
<el ement ref="uddi : bi ndi ngTenpl at es" m nCccurs="0" />
<el ement ref="uddi : cat egoryBag" m nCccurs="0" />
</ sequence>

<attribute name="servi ceKey" type="uddi:servi ceKey" use="required" />
<attribute nanme="busi nessKey" type="uddi: busi nessKey" use="optional" />
</ conpl exType>

The bi ndi ngTenpl at es structure is a container for zero or more bi ndi ngTenpl at e structures. This structure holds the technical service
description information related to a given business service family.

The cat egor yBag is an optional element. This is an optional list of name-value pairs that are used to tag a busi nessServi ce with
specific taxonomy information (e.g. industry, product or geographic codes). These can be used during search via fi nd_servi ce.

The bi ndi ngTenpl at e structure

Technical descriptions of Web services are accommodated via individual contained instances of bi ndi ngTenpl at e structures. These
structures provide support for determining a technical entry point or optionally support remotely hosted services, as well as a lightweight
facility for describing unique technical characteristics of a given implementation. Support for technology and application specific
parameters and settings files are also supported.

Since UDDI’s main purpose is to enable description and discovery of Web Service information, it is the bi ndi ngTenpl at e that provides
the most interesting technical data.

Each bi ndi ngTenpl at e structure has a single logical busi nessSer vi ce parent, which in turn has a single logical busi nessEntity parent.

Structure Specification:

<el ement nane="bi ndi ngTenpl at e" type="uddi : bi ndi ngTenpl ate" />

<conpl exType nane="bi ndi ngTenpl at e" >
<sequence>

file:///D|/workspace/wsd-guide/wsd-guide.html (46 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<el enment ref="uddi:description" m nCccurs="0" maxCccurs="unbounded" />
<choi ce>
<el ement ref="uddi:accessPoint" />
<el ement ref="uddi: hosti ngRedirector" />
</ choi ce>
<el ement ref="uddi:tModel | nstanceDetails" />
</ sequence>

<attribute nane="servi ceKey" type="uddi: servi ceKey" use="optional" />
<attribute name="bi ndi ngKey" type="uddi : bi ndi ngKey" use="required" />
</ conpl exType>

The accessPoi nt element is an attribute-qualified pointer to a service entry point. The notion of service at the metadata level seen here
is fairly abstract and many types of entry points are accommodated. A single attribute is provided (named URLType). The purpose of the
URLType attribute is to facilitate searching for entry points associated with a particular type of entry point. An example might be a
purchase order service that provides three entry points, one for HTTP, one for SMTP, and one for FAX ordering. In this example, we'd
find a busi nessSer vi ce element that contains three bi ndi ngTenpl at e entries, each with identical data with the exception of the
accessPoi nt value and URLType value.

The t Model | nst anceDet ai | s structure is a simple accessor container for one or more t Mbdel | nst ancel nf o structures. When taken as a
group, the data that is presented in a t Model | nst anceDet ai | s structure forms a technically descriptive fingerprint by virtue of the
unordered list of t Model Key references contained within this structure. What this means in English is that when someone registers a

bi ndi ngTenpl at e (within a busi nessEnti ty structure), it will contain one or more references to specific and identifiable specifications
that are implied by the t Model Key values provided with the registration. During an inquiry for a service, an interested party could use
this information to look for a specific bi ndi ngTenpl at e that contains a specific t Model reference, or even a set of t Model references. By
registering a specific fingerprint in this manner, a software developer can readily signify that they are compatible with the specifications
implied in the t Model Key elements exposed in this manner.

The t Mbdel structure

Being able to describe a Web service and then make the description meaningful enough to be useful during searches is an important
UDDI goal. Another goal is to provide a facility to make these descriptions useful enough to learn about how to interact with a service
that you don’t know much about. In order to do this, there needs to be a way to mark a description with information that designates
how it behaves, what conventions it follows, or what specifications or standards the service is compliant with. Providing the ability to
describe compliance with a specification, concept, or even a shared design is one of the roles that the t Mbdel structure fills.

The t Mbdel structure takes the form of keyed metadata (data about data). In a general sense, the purpose of a t Model within the UDDI
registry is to provide a reference system based on abstraction. Thus, the kind of data that a t Model represents is pretty nebulous. In
other words, a t Model registration can define just about anything, but in the current revision, two conventions have been applied for
using t Model s: as sources for determining compatibility and as keyed namespace references.

The information that makes up a t Model is quite simple. There’s a key, a name, an optional description, and then a URL that points
somewhere — presumably somewhere where the curious can go to find out more about the actual concept represented by the metadata
in the t Model itself.

There are two places within a busi nessEnti ty registration that you'll find references to t Model s. In this regard, t Model s are special.
Whereas the other data within the busi nessEntity (e.g. busi nessServi ce and bi ndi ngTenpl at e data) exists uniquely with one
uniquely keyed instance as a member of one unique parent busi nessEntity, t Model s are used as references. This means that you'll
find references to specific t Model instances in many busi nessEnti ty structures.

Defining the technical fingerprint.

The primary role that a t Model plays is to represent a technical specification. An example might be a specification that outlines wire
protocols, interchange formats and interchange sequencing rules. Examples can be seen in the RosettaNet Partner Interface Processes
specification, the Open Applications Group Integration Specification and various Electronic Document Interchange (EDI) efforts.

Software that communicates with other software across some communication medium invariably adheres to some pre-agreed
specifications. In situations where this is true, the designers of the specifications can establish a unique technical identity within a UDDI
registry by registering information about the specification in a t Model .

Once registered in this way, other parties can express the availability of Web services that are compliant with a specification by simply
including a reference to the t Model identifier (called a t Model Key) in their technical service descriptions bi ndi ngTenpl at e data.

This approach facilitates searching for registered Web services that are compatible with a particular specification. Once you know the
proper t Mbdel Key value, you can find out whether a particular business or entity has registered a Web service that references that
t Model key. In this way, the t Model Key becomes a technical fingerprint that is unique to a given specification.

Defining an abstract namespace reference.

The other place where t Model references are used is within the i denti fi er Bag, cat egor yBag, addr ess and publ i sher Assertion
structures that are used to define organizational identity and various classifications. Used in this context, the t Model reference
represents a relationship between the keyed name-value pairs to the super-name, or namespace within which the name-value pairs are

file:///D|/workspace/wsd-guide/wsd-guide.html (47 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

meaningful.

An example of this can be seen in the way a business or entity can express the fact that their US tax code identifier (which they are sure
they are known by to their partners and customers) is a particular value. To do this, let's assume that we find a t Mbdel that is named
“US Tax Codes”, with a description “United States business tax code numbers as defined by the United States Internal Revenue Service”.
In this regard, the t Mbdel still represents a specific concept — but instead of being a technical specification, it represents a unique area
within which tax code ID’s have a particular meaning.

Once this meaning is established, a business can use the t Mbdel Key for the tax code t Model as a unique reference that qualifies the
remainder of the data that makes up an entry in the identifierBag data.

To get things started, the UDDI Operator Sites have registered a number of useful t Mbdel s, including NAICS (an industry code
taxonomy), UNSPC (a product and service category code taxonomy), and 1SO 3166 (a geographical region code taxonomy).

Structure Specification:

<el ement nane="t Model " type="uddi :tMdel" />

<conpl exType nane="t Model ">

<sequence>
<el ement ref="uddi:nanme" />
<el ement ref="uddi:description" m nQccurs="0" maxCOccur s="unbounded" />
<el ement ref="uddi: overvi ewDoc" m nCccurs="0" />
<el ement ref="uddi:identifierBag" m nCccurs="0" />
<el ement ref="uddi : cat egoryBag" m nCccurs="0" />

</ sequence>

<attribute nanme="t Model Key" type="uddi:tMdel Key" use="required" />
<attribute nane="operator" type="string" use="optional" />
<attribute name="aut hori zedNane" type="string" use="optional" />

</ conpl exType>

The publ i sher Asserti on structure

Many businesses, like large enterprises or marketplaces, are not effectively represented by a single busi nessEnti ty, since their
description and discovery are likely to be diverse. As a consequence, several busi nessEnti ty structures can be published, representing
individual subsidiaries of a large enterprise or individual participants of a marketplace. Nevertheless, they still represent a more or less
coupled community and would like to make some of their relationships visible in their UDDI registrations. Therefore, two related
businesses use the xx_publ i sher Asserti on messages, publishing assertions of business relationships.

In order to eliminate the possibility that one publisher claims a relationship between both businesses that is in fact not reciprocally
recognized, both publishers have to agree that the relationship is valid by publishing their own publ i sher Asserti on. Therefore, both
publishers have to publish exactly the same information. When this happens, the relationship becomes visible.

In the case that a publisher is responsible for both businesses, the relationship automatically becomes visible after publishing just one of
both assertions that make up the relationship.

The publ i sher Asserti on structure consists of the three elements f r onKey (the first busi nessKey), t oKey (the second busi nessKey)
and keyedRef er ence. The keyedRef er ence designates the asserted relationship type in terms of a keyNane keyVal ue pair within a

t Model , uniquely referenced by a t Model Key. All three parts of the keyedRef er ence — the t Model Key, the keyNane, and the keyVal ue —
are mandatory in this context. Empty (zero length) keyNanme and keyVal ue elements are permitted.

<el ement nanme="publ i sherAssertion" type="uddi: publisherAssertion" />

<conpl exType nane="publisher Assertion">
<sequence>
<el ement ref="uddi: fronKey" />
<el enent ref="uddi:toKey" />
<el ement ref="uddi : keyedRef erence" />
</ sequence>
</ conpl exType>

Simplified UML Model for UDDI Information Model:

file:///D|/workspace/wsd-guide/wsd-guide.html (48 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

businessEntity 0..n categoryBag

+ key : String 0..n identifierBag
+ name : String

+ description : String

+ operator : String

+ guthorizedMame : String
+ contacts : Collection

+ categoryBag : tModel

+ identifierBag : tModel

0.n

businessService 0..n categoryBag

+ key : String

+ name : 5tring

+ description : String
+ categoryBag : tModel

0..n 0..n | 0.
1n tModel
bindingTemplate + key : String
+ key : String - 1..n| tModellnstancelnfo 1 _|+name : String
+ hostingRedirector : bindingTemplate + description : String + description : String 0..n
+ accessPaint : String + operator : String
+ authorizedMame : String | 0..n
+ categoryBag : tModel
+ identifierBag : tModel
0..1
0..n 0..n
instanceDetails
— - identifierBag
+ description : String
+ instanceParms : Collection categoryBag
1
overviewDoc

+ description : String

BP 1.0 Requirements - Service Publication and Discovery
REGDATA of type uddi : bi ndi ngTenpl at e representing a conformant INSTANCE MUST contain the uddi : accessPoi nt element.

CORRECT:

<bi ndi ngTenpl at e bi ndi ngKey="...">
<description xm : | ang="EN'>Bar SOAPPor t </ descri pti on>
<accessPoi nt >ht t p: / / exanpl e. or g/ nyBar SOAPPor t </ accessPoi nt >
<t Model | nst anceDet ai | s>

</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>

INCORRECT:

<bi ndi ngTenpl at e bi ndi ngkey="...">
<descri ption xm : | ang="EN'>Bar SOAPPort </ descri pti on>
<hosti ngRedi rect or bi ndi ngKey="..."/>

<t Mbdel | nst anceDet ai | s>

file://ID|/workspace/wsd-guide/wsd-guide.html (49 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>

REGDATA of type uddi : t Model representing a conformant Web service type MUST use WSDL as the description language.

REGDATA of type uddi : t Model representing a conformant Web service type MUST be categorized using the uddi : t ypes taxonomy and a
categorization of "wsdl Spec".

The wsdl : bi ndi ng that is referenced by REGDATA of type uddi : t Model MUST itself conform to the Profile.

Describe the basic functions provided by the UDDI Publish and Inquiry APIs to interact with a UDDI business
registry.

Publish API functions

The messages in this section represent commands that require authenticated access to an UDDI Operator Site, and are used to publish
and update information contained in a UDDI compatible registry. Each business should initially select one Operator Site to host their
information. Once chosen, information can only be updated at the site originally selected. UDDI provides no automated means to
reconcile multiple or duplicate registrations. The messages defined in this section all behave synchronously and are callable via HTTP-
POST only. HTTPS is used exclusively for all of the calls defined in this publisher's API. The publishing API calls defined that UDDI
operators support are:

. add_publisherAssertions: Used to add relationship assertions to the existing set of assertions.

. del et e_bi ndi ng: Used to remove an existing bi ndi ngTenpl at e from the bi ndi ngTenpl at es collection that is part of a specified
busi nessSer vi ce structure.

. del et e_busi ness: Used to delete registered busi nessEnti ty information from the registry.
del et e_publ i sher Asserti ons: Used to delete specific publisher assertions from the assertion collection controlled by a particular
publisher account. Deleting assertions from the assertion collection will affect the visibility of business relationships. Deleting an
assertion will cause any relationships based on that assertion to be invalidated.

. del ete_service: Used to delete an existing busi nessSer vi ce from the busi nessSer vi ces collection that is part of a specified
busi nessEntity.
del et e_t Mbdel : Used to hide registered information about a t Mbdel . Any t Mbdel hidden in this way is still usable for reference
purposes and accessible via the get _t Mbdel Det ai | message, but is simply hidden from fi nd_t Model result sets. There is no way
to actually cause a t Mbdel to be deleted, except by administrative petition.

di scard_aut hToken: Used to inform an Operator Site that a previously provided authentication token is no longer valid and
should be considered invalid if used after this message is received and until such time as an aut hToken value is recycled or
reactivated at an operator's discretion. See get _aut hToken.

. get_assertionStatusReport: Used to get a status report containing publisher assertions and status information. This report is
useful to help an administrator manage active and tentative publisher assertions. Publisher assertions are used in UDDI to
manage publicly visible relationships between busi nessEnti ty structures. Relationships are a feature introduced in generic 2.0
that help manage complex business structures that require more than one busi nessEntity or more than one publisher account to
manage parts of a busi nessEntity. Returns an asserti onSt at usReport that includes the status of all assertions made involving
any busi nessEnti ty controlled by the requesting publisher account.

. get_aut hToken: Used to request an authentication token from an Operator Site. Authentication tokens are required when using all
other API's defined in the publishers API. This function serves as the program's equivalent of a login request.

. get_publisherAssertions: Used to get a list of active publisher assertions that are controlled by an individual publisher account.
Returns a publ i sher Asserti ons message containing all publisher assertions associated with a specific publisher account.
Publisher assertions are used to control publicly visible business relationships.

. get_registeredl nfo: Used to request an abbreviated synopsis of all information currently managed by a given individual.
save_bi ndi ng: Used to register new bi ndi ngTenpl at e information or update existing bi ndi ngTenpl at e information. Use this to
control information about technical capabilities exposed by a registered business.

. save_busi ness: Used to register new busi nessEnti ty information or update existing busi nessEnti ty information. Use this to
control the overall information about the entire business. Of the save_xx API’s this one has the broadest effect. In UDDI V2, a
feature is introduced where save_busi ness can be used to reference a busi nessSer vi ce that is parented by another
busi nessEntity.

. save_service: Used to register or update complete information about a busi nessSer vi ce exposed by a specified
busi nessEntity.
save_t Model : Used to register or update complete information about a t Model .

. set_publisherAssertions: used to save the complete set of publisher assertions for an individual publisher account. Replaces
any existing assertions, and causes any old assertions that are not reasserted to be removed from the registry. Publisher
assertions are used to control publicly visible business relationships.

Inquiry API functions

The messages in this section represent inquiries that anyone can make of any UDDI Operator Site at any time. These messages all
behave synchronously and are required to be exposed via HTTP-POST only. Other synchronous or asynchronous mechanisms may be
provided at the discretion of the individual UDDI Operator Site or UDDI compatible registry. The publicly accessible queries are:

. find_bindi ng: Used to locate specific bindings within a registered busi nessSer vi ce. Returns a bi ndi ngDet ai | message.
find_busi ness: Used to locate information about one or more businesses. Returns a busi nessLi st message.

. find_rel at edBusi nesses: Used to locate information about busi nessEnti ty registrations that are related to a specific business
entity whose key is passed in the inquiry. The Related Businesses feature is used to manage registration of business units and
subsequently relate them based on organizational hierarchies or business partner relationships. Returns a

file://ID|/workspace/wsd-guide/wsd-guide.html (50 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

rel at edBusi nessesLi st message.

. find_service: Used to locate specific services within a registered busi nessEntity. Returns a servi ceLi st message.
find_t Mbdel : Used to locate one or more t Mbdel information structures. Returns a t Model Li st structure.

. get _bi ndi ngDet ai | : Used to get full bi ndi ngTenpl at e information suitable for making one or more service requests. Returns a
bi ndi ngDet ai | message.

. get_businessDetai |l : Used to get the full busi nessEnti ty information for one or more businesses or organizations. Returns a
busi nessDet ai | message.
get _busi nessDet ai | Ext : Used to get extended busi nessEntity information. Returns a busi nessDet ai | Ext message.

. get_serviceDetail : Used to get full details for a given set of registered busi nessSer vi ce data. Returns a servi ceDet ai |
message.

. get_t Model Det ai | : Used to get full details for a given set of registered t Model data. Returns a t Model Det ai | message.

Chapter 4. JAX-RPC

Explain the service description model, client connection types, interaction modes, transport mechanisms/protocols,
and endpoint types as they relate to JAX-RPC.

JAX-RPC is for Web services interoperability across heterogeneous platforms and languages. This makes JAX-RPC a key technology for
Web services integration.

You can use the standard JAX-RPC programming model to develop Web service clients and endpoints based on SOAP. A Web service
endpoint is described using a Web Services Description Language (WSDL) document. JAX-RPC enables JAX-RPC clients to invoke Web
services developed across heterogeneous platforms. In a similar manner, JAX-RPC Web service endpoints can be invoked by
heterogeneous clients. JAX-RPC requires SOAP and WSDL standards for this cross-platform interoperability.

JAX-RPC provides an easy to develop programming model for development of SOAP based Web services. You can use the RPC
programming model to develop Web service clients and endpoints. For typical scenarios, you are not exposed to the complexity of the
underlying runtime mechanisms (for example, SOAP protocol level mechanisms, marshalling and unmarshalling). A JAX-RPC runtime
system (a library) abstracts these runtime mechanisms for the Web services programming model. This simplifies Web service
development.

JAX-RPC provides support for WSDL-to-Java and Java-to-WSDL mapping as part of the development of Web service clients and
endpoints. In a typical development environment, tools provide these mapping functionality. This further simplifies the application
development.

JAX-RPC enables a Web service endpoint to be developed using either a Java Servlet or Enterprise JavaBeans (EJB) component model. A
Web service endpoint is deployed on either the Web container or EJB container based on the corresponding component model. These
endpoints are described using a WSDL document. This WSDL document can be published in public or private registry, though this is not
required. A client uses this WSDL document and invokes the Web service endpoint. A JAX-RPC client can use stubs-based, dynamic
proxy or dynamic invocation interface (DIl) programming models to invoke a heterogeneous Web service endpoint.

JAX-RPC requires SOAP over HTTP for interoperability. JAX-RPC provides support for SOAP message processing model through the SOAP
message handler functionality. This enables developers to build SOAP specific extensions to support security, logging and any other
facility based on the SOAP messaging. JAX-RPC uses SAAJ API for SOAP message handlers. SAAJ provides a standard Java API for
constructing and manipulating SOAP messages with attachments.

JAX-RPC provides support for document-based messaging. Using JAX-RPC, any MIME-encoded content can be carried as part of a SOAP
message with attachments. This enables exchange of XML documents, images and other MIME types across Web services.

JAX-RPC supports HTTP level session management and SSL based security mechanisms. This enables you to develop secure Web
services. More advanced SOAP message-level security will be addressed in the evolution of JAX-RPC technology.

Steps for Implementing a Service:

1. Define Web Service Endpoint Interface
2. Implement Web Service class and methods
3. Package and deploy

Endpoint Interface example:

package com exanpl e;

i mport java.rm . Renote;
i mport java.rm .Renpt eExcepti on;

public interface Hell ol F extends Renpte {
public String sayHello(String s) throws RenoteException;
}

Service endpoint interface [SEI] MUST extend j ava. r mi . Renpt e interface. NOTE: Service implementation class MAY not implement SEI
(using i npl enent s Java reserved word). But it MUST provide all SEI methods implementations with same signatures.

file://ID|/workspace/wsd-guide/wsd-guide.html (51 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Service endpoint interface's methods MUST throw j ava. r mi . Renot eExcepti on exception. NOTE: Service implementation class’ methods
MUST NOT throw j ava. r mi . Renot eExcepti on.

Service endpoint interface [SEI] MAY be generated from WSDL (WSDL-to-Java approach).
Web Service can be implemented in form:

1. Java class (for servlet-based endpoint)

NOTE: Your implementation class does not throw Renpt eExcepti on. This is the responsibility of the container as this
implementation will be deployed in a managed J2EE container.

2. Stateless session bean (for EJB-based endpoint)

com exanpl e. G eeti ng is the bean's Web service endpoint interface. It provides the client's view of the Web service, hiding the
stateless session bean from the client. A Web service endpoint interface must conform to the rules of a JAX-RPC service definition
interface:

. It extends the j ava. rm . Renot e interface.

. It MUST NOT have constant declarations, such as public final static.

. The methods MUST throw the j ava. r m . Renot eExcept i on or one of its subclasses. The methods may also throw service-
specific exceptions.

. Method parameters and return types must be supported JAX-RPC types.

Here is the source code for the com exanpl e. G eet i ng endpoint interface:

The com exanpl e. Gr eet i ngBean class implements the sayHel | o method defined by the com exanpl e. G- eet i ng interface. The
interface decouples the implementation class from the type of client access. For example, if you added remote and home
interfaces to com exanpl e. Gr eet i ngBean, the methods of the com exanpl e. G eet i ngBean class could also be accessed by
remote clients. No changes to the com exanpl e. G- eet i ngBean class would be necessary.

The source code for the com exanpl e. G eet i ngBean Stateless Session Bean Class follows:

file:///D|/workspace/wsd-guide/wsd-guide.html (52 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

}

public voi d set Sessi onCont ext (Sessi onCont ext ctx) {

}

Deployment Descriptor:

<?xm version='1.0" encodi ng=' UTF-8' ?>

<ej b-jar version="2.1" xm ns="http://java. sun. com xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. coni xm / ns/j 2ee
http://java. sun. com xm / ns/j 2ee/ ej b-jar_2_ 1. xsd">

<ent erpri se- beans>
<sessi on>
<ej b- nane>G eet i ngBean</ ej b- name>
<servi ce- endpoi nt >com exanpl e. G eet i ng</ servi ce- endpoi nt >
<ej b- cl ass>com exanpl e. Gr eet i ngBean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Cont ai ner</transacti on-type>
<security-identity>
<use-caller-identity/>
</security-identity>
</ sessi on>
</enterprise-beans>

</ejb-jar>

Given a set of requirements for a Web service, such as transactional needs, and security requirements, design and
develop Web service applications that use servlet-based endpoints and EJB based endpoints.

EJB based endpoint

JSR 109 standardizes webservice in J2EE 1.4 using JAX-RPC. EJB 2.1 exposes Stateless Session bean as a web service endpoint using
JAX-RPC interface and any webservice client can access the EJB webservice using SOAP 1.1 over HTTP. The developer can choose a web
service endpoint interface for a stateless session bean whenever he wants to expose the functionality of the bean as a web service
endpoint through WSDL. The clients for EJB Web Service endpoint may be Java clients and/or clients written in a programming language
other than Java. A Java client that accesses the EJB Web Service has to use JAX-RPC client APIs. This is an example shows how can you
expose your existing EJB applications as a webservice endpoint and how a pure Java client accesses the ejb webservice.

We will use a simple Stateless Session bean Ti neBean that displays the current time and locale information. For exposing the webservice
endpoint you do not need to have home or remote interfaces for the EJBs, only the end-point interface that extends j ava. rni . Renot e
and bean implementation class is required. Following the code for the service-endpoint for the EJB:

package ti me;

i mport java.rm .RenoteException;
i nport java.rm .Renpte;

public interface TineService extends Renpte {
public String getDateTinme (String nane) throws RenoteException;

}

Then we have to define the end-point interface in ej b-j ar. xm as follows:

<sessi on>
<di spl ay- nane>Ti neSer vi ceEJB</ di spl ay- nane>
<ej b- nane>Ti neSer vi ceEJB</ e b- nane>
<servi ce-endpoi nt >ti me. Ti neSer vi ce</ servi ce- endpoi nt >
<ej b-cl ass>ti ne. Ti meSer vi ceBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>

file:///D|/workspace/wsd-guide/wsd-guide.html (53 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

</ sessi on>

The WSDL file defines the web services e.g. the following MyTi meSer vi ce. wsdl describes the Time ejb webservice:

<?xm version="1.0" encodi ng="UTF-8"?>

<defini tions name="M/Ti meServi ce" target Namespace="urn: oracl e-ws" xnl ns:tns="urn: oracl e-
ws"
xm ns="http://schemas. xn soap. or g/ wsdl /"
xm ns: xsd="htt p: // ww. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ " >
<t ypes/ >

<nmessage name="Ti neServi ce_get Dat eTi me" >
<part name="String_1" type="xsd:string"/>
</ nessage>

<message nanme="Ti neServi ce_get Dat eTi nreResponse" >
<part nane="result" type="xsd:string"/>
</ message>

<port Type nane="Ti neServi ce">
<oper ati on nane="get Dat eTi me" paraneterOrder="String_1">
<i nput nessage="tns: Ti meServi ce_get Dat eTi ne"/ >
<out put nessage="tns: Ti meServi ce_get Dat eTi neResponse"/ >
</ oper at i on>
</ port Type>

<bi ndi ng name="Ti neSer vi ceBi ndi ng" type="tns: Ti meServi ce">
<oper ati on nane="get Dat eTi ng" >
<i nput >
<soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
use="encoded" nanmespace="urn:oracl e-ws"/>
</i nput >
<out put >
<soap: body encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
use="encoded" nanespace="urn: oracl e-ws"/>
</ out put >
<soap: oper ati on soapAction=""/>
</ oper at i on>

<soap: bi ndi ng transport="http://schenmas. xnl soap. or g/ soap/ http" style="rpc"/>
</ bi ndi ng>

<servi ce name="M/Ti neServi ce" >
<port name="Ti nmeServi cePort" bindi ng="tns: Ti neServi ceBi ndi ng" >
<soap: addr ess | ocati on="REPLACE_W TH_ACTUAL_URL"/ ></ port >

</ servi ce>

</definitions>

The mappi ng. xm file specifies the Java to WSDL mapping i.e. it contains the mapping between package names and XML namespaces,
WSDL root types and Java artifacts, and the set of mappings for services. For example we will have the following contents for our
mappi ng. xm :

<package- mappi ng>
<package-type>ti ne</ package- t ype>
<nanespaceURl >ur n: or acl e- ws</ namespaceUR| >
</ package- mappi ng>

Deployment of webservices requires a deployment descriptor named webser vi ces. xm in META- | NF of the ej b-j ar file. This descriptor
specifies the set of web service descriptions that are to be deployed into the J2EE Application Server and the dependencies they have on
container resources and services:

file:///D|/workspace/wsd-guide/wsd-guide.html (54 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<webservi ce-descri pti on>
<webservi ce-descri pti on- nane>Ti neSer vi ceEJB</ webser vi ce- descri pti on- nane>
<wsdl - fi | e>SMETA- | NF/ MyTi meSer vi ce. wsdl </ wsdl -fil e>
<j axr pc- mappi ng- f i | e>META- | NF/ mappi ng. xm </ j axr pc- mappi ng-fil e>
<port - conmponent >
<descri pti on>port conponent descri ption</description>
<port - conponent - nane>Ti neSer vi cePort </ port - conponent - name>
<wsdl - port>
<namespaceURl >ur n: or acl e- ws</ nanespaceURIl >
<l ocal part >Ti meSer vi cePort </| ocal part>
</ wsdl - port >
<servi ce- endpoi nt-interface>ti me. Ti neServi ce</ servi ce-endpoi nt-interface>
<servi ce-i npl - bean>
<ej b-1'i nk>Ti meSer vi ceEIB</ e] b-1i nk>
</ servi ce-i npl - bean>
</ port - conponent >
</ webservi ce-descri pti on>

Servlet based endpoint

During the deployment of a service endpoint component on a servlet container based JAX-RPC runtime system, a service endpoint class
is associated with a servlet. The associated servlet class is provided by the JAX-RPC runtime system (not by service endpoint developer)
during the deployment. This association is configured in a manner specific to a JAX-RPC runtime system and its deployment tool. For
example, a JAX-RPC deployment tool may configure a 1-1 association between a servlet class and service endpoint class. The associated
servlet class corresponds to the configured transport binding for the service endpoint. For example, the servlet class

javax.servlet. http. H t pServl et is used for the HTTP transport.

The associated servlet typically takes the responsibility of handling transport specific processing of an RPC request and for initiating
dispatch to the target service endpoint instance. Each Servl et . servi ce(...) method maps to a single remote method invocation on
the target service endpoint instance. The thread model (whether single threaded or concurrent) for the remote method invocation on the
service endpoint instance depends on the runtime system specific servlet associated with the corresponding endpoint class. The Servlet
specification provides facility for both concurrent and single threaded model (the latter through the Si ngl eThr eadMbdel interface) for
the service(...) method on a servlet.

When processing an incoming SOAP request for a one-way operation, the associated servlet is required to send back an HTTP response
code of 200 or 202 as soon as it has identified the incoming request as being one-way and before it dispatches it to the target service
endpoint instance.

The term JAX-RPC Service Endpoint used within the JAX-RPC specification is somewhat confusing since both Service Implementation
Beans require the use of a JAX-RPC run time. However, in this case it refers to the programming model defined within the JAX-RPC
specification that is used to create Web services that run within the web container. The requirements are repeated here with clarification.
Changes from the JAX-RPC defined programming model are required for running in a J2EE container-managed environment. A JAX-RPC
Service Endpoint can be single or multi-threaded. The concurrency requirement is declared as part of the programming model. A JAX-
RPC Service Endpoint must implement j avax. ser vl et. Si ngl eThr eadMbdel if single threaded access is required by the component. A
container must serialize method requests for a Service Implementation Bean that implements the Si ngl eThr eadModel interface. Note,
the Si ngl eThr eadMbdel interface has been deprecated in the Servlet 2.4 specification. The Service Implementation Bean must follow the
Service Developer requirements outlined in the JAX-RPC specification and are listed below except as noted:

. The Service Implementation Bean must have a default public constructor.

The Service Implementation Bean may implement the Service Endpoint Interface as defined by the JAX-RPC Servilet model. The
bean must implement all the method signatures of the SEI. In addition, a Service Implementation Bean may be implemented that
does not implement the SEI. This additional requirement provides the same SEI implementation flexibility as provided by EJB
service endpoints. The business methods of the bean must be publ i ¢ and must not be st ati c. If the Service Implementation
Bean does not implement the SEI, the business methods must not be fi nal . The Service Implementation Bean may implement
other methods in addition to those defined by the SEI, but only the SEI methods are exposed to the client.

. A Service Implementation must be a stateless object. A Service Implementation Bean must not save client specific state across
method calls either within the bean instance's data members or external to the instance. A container may use any bean instance
to service a request.

. The class must be publ i ¢, must not be fi nal and must not be abstract .

The class must not define the final i ze() method.

A Service Implementation Bean for the web container may implement the j ava. xm . rpc. server. Servi ceLi f eCycl e interface:

package j avax.xmnl .rpc. server;

public interface ServiceLifecycle {
void init(Object context) throws ServiceException;
voi d destroy();

The Servi celLi f ecycl e interface allows the web container to notify a Service Implementation Bean instance of impending changes in its

file:///D|/workspace/wsd-guide/wsd-guide.html (55 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

state. The bean may use the notification to prepare its internal state for the transition. If the bean implements the Servi celLi f ecycl e
interface, the container is required to call theinit(...) and destroy methods as described below.

The container must call the init (...) method before it can start dispatching requests to the SEI methods of the bean. Theinit(...)
method parameter value provided by the container is described by the JAX-RPC specification. The bean may use the container
notification to ready its internal state for receiving requests.

The container must notify the bean of its intent to remove the bean instance from the container's working set by calling the destroy()
method. A container may not call the destroy() method while a request is being processed by the bean instance. The container may not
dispatch additional requests to the SEI methods of the bean after the dest roy() method is called.

When should one implement Web services in J2EE 1.4 using stateless Session Bean as opposed to using Java class
Use a stateless Session Bean to expose Web services if you:

. Need to expose previously existing stateless Session Beans as Web services
. Need declarative transaction management

. Need the thread management provided by EJB Container

. Need role based security

Use Java classes to expose your Web services if you:

. Need to expose previously existing Java classes as Web services
. Want a light-weight system, and don't care much about transactional capabilities that an EJB container provides

Given an set of requirements, design and develop a Web sevice client, such as a J2EE client and a stand-alone Java
client, using the appropriate JAX-RPC client connection style.

JAX-RPC Client Environment:

. Service endpoint can be implemented using any platform or language.
. May generate client code from WSDL:

n Static stub (compile time)
o Dynamic proxy (runtime)

. May call Web Service directly:
o Dynamic invocation interface (DII)
Can use either J2SE or J2EE programming model.
There are three Web Service Client programming models:
1. Stub-based (least dynamic)

Both interface (WSDL) and implementation (stub) created at compile time.
2. Dynamic proxy

Interface (WSDL) created at compile time. Implementation (dynamic proxy) created at runtime.
3. Dynamic invocation interface (DII)

Both interface (WSDL) and implementation created at runtime.
Stub-based Invocation Model

. Stub class gets generated at compile time
Instantiated using vendor-generated Service implementation class
. Best performance
. Stub class implements j avax. xmi . r pc. St ub interface and Web Service definition interface (com exanpl e. Hel | ol F)

package j avax. xnl . rpc;
inmport java.util.lterator;

public interface Stub {

/**
* Standard property: User name for authentication.
*/
public static final String USERNAME PROPERTY = Cal | . USERNAVE _PROPERTY;

file://ID|/workspace/wsd-guide/wsd-guide.html (56 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

«interfaces «interfaces

Steps for Stub-Based Invocation Client:

Generate Stubs

Create Client code

Compile the Client code with remote interface and stubs in CLASSPATH
Run the Client with JAX-RPC generated code and runtime

PoNPR

Stand-alone Stub-based Client example:

file:///D|/workspace/wsd-guide/wsd-guide.html (57 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

J2EE Stub-based Client example:

Dynamic Proxy-based Invocation Model

At Runtime Application provides the WSDL

Dynamic proxy is generated on the fly by JAX-RPC runtime system
Slower than stub-based: proxy created and casted

More portable than stub-based: does not depend on vendor generated service class before runtime

Dynamic Proxy Client example:

file:///D|/workspace/wsd-guide/wsd-guide.html (58 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<servi ce nane="Hel | oWor| d">
<port nane="Hel |l ol FPort" bi ndi ng="t ns: Hel | oWor | dBi ndi ng" >
<soap: address | ocation="http://exanpl e. conl Hel | oWor | d"/>
</ port>
</ servi ce>

The j avax. xml . rpc. Servi ce interface :

package j avax.xnl . rpc;

i mport javax.xnl . nanespace. QNane;
i nport javax.xmnl . rpc. encodi ng. TypeMappi ngRegi stry;
i mport javax.xm .rpc. handl er. Handl er Regi stry;

public interface Service {

/**

* The getPort nmethod returns either an instance of a generated

* stub inplenentation class or a dynami c proxy. A service client

* uses this dynam c proxy to invoke operations on the target

* service endpoi nt. The <code>servi ceEndpoi nt | nt erface</code>

* specifies the service endpoint interface that is supported by

* the created dynanmi c proxy or stub instance.

*/

public java.rm . Renote getPort(Q\Name portNane, C ass servi ceEndpoi ntlnterface)
throws Servi ceExcepti on;

*

The get Port method returns either an instance of a generated
stub i npl enentation class or a dynam c proxy. The paraneter
<code>ser vi ceEndpoi nt | nt er f ace</ code> specifies the service
endpoint interface that is supported by the returned stub or
proxy. In the inplementation of this nethod, the JAX- RPC
runti me systemtakes the responsibility of selecting a protocol
bi ndi ng (and a port) and configuring the stub accordingly.

* The returned <code>Stub</code> instance should not be

* reconfigured by the client.

*/

public java.rm . Renpte getPort (C ass servi ceEndpoi nt | nterface)
throws Servi ceExcepti on;

* 0% 2k kX X X %

public Call[] getCalls(Q\ane portNane) throws Servi ceException;

public Call createCall (Q\ame portNane) throws Servi ceException;

public Call createCall (Q\ane port Name, QNane operati onNane)
throws Servi ceExcepti on;

public Call createCall (Q\Name portNane, String operati onNane)
throws Servi ceExcepti on;

public Call createCall () throws ServiceException;

publ i c QNanme get Servi ceNane() ;

public java.util.lterator getPorts() throws ServiceException;

public java.net.URL get WsDLDocunent Locati on();

publ i ¢ TypeMappi ngRegi stry get TypeMappi ngRegi stry();

publ i ¢ Handl er Regi stry get Handl er Regi stry();

Dynamic Invocation Interface (DI1) Model

Gives complete control to client programmer

Most dynamic but complex programming

Create JAX-RPC j avax. xm . rpc. Cal | object first, set operation and parameters during runtime
Could combine with UDDI lookup and WSDL parsing for dynamic lookup and discovery

Used when service definition interface is NOT known until runtime

Dynamic Invocation Interface (DII) Client example:

package com exanpl e;

file:///D|/workspace/wsd-guide/wsd-guide.html (59 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

i mport javax.xm .rpc.Call;

i mport javax.xm .rpc. Servi ce;

i mport javax.xml .rpc. JAXRPCExcepti on;
i mport javax.xn .nanespace. QNaneg;

i mport javax.xnl.rpc. Servi ceFactory;
i mport javax.xnl.rpc. Paranet er Mode;

public class Hellodient {

private static String endpoint = "http://| ocal host: 8080/ dynami c-j axr pc/ dynam c";
private static String gqnaneService = "Hell o";
private static String qnanePort = "Hellol F*;

private static String BODY_NAMESPACE VALUE = "http://dynam c. org/wsdl";
private static String ENCODI NG STYLE PROPERTY =
"javax. xnl . rpc. encodi ngstyl e. nanespace. uri";
private static String NS_XSD = "http://ww. w3. or g/ 2001/ XM_Schema" ;
private static String URI _ENCODI NG = "http://schemas. xm soap. or g/ soap/ encodi ng/ " ;

public static void main(String[] args) {
try {
Servi ceFactory factory = Servi ceFactory. new nstance();
Service service = factory. createServi ce(new QNane(gnaneServi ce));

QNanme port = new QName(gnanePort);

//create JAX-RPC Cal | using JAX-RPC Service's createCall () nethod.
Call call = service.createCall (port);

/1 Configure your Call instance with its setter methods
cal | . set Tar get Endpoi nt Addr ess(endpoi nt) ;
cal |l . set Property(Call.SOAPACTI ON_USE PROPERTY, new Bool ean(true));
cal |l . set Property(Call.SOAPACTI ON_URI _PROPERTY, "");
cal | . set Property(ENCODI NG STYLE_PROPERTY, URI _ENCODI NG) ;
QNane ONAME_TYPE_STRI NG = new QNanme(NS_XSD, "string");
cal | . set Ret ur nType(QNAME_TYPE_STRI NG ;
cal | . set Oper ati onNanme(new QNanme(BODY_NAMESPACE VALUE "sayHel | 0"));
cal | . addParaneter ("“String_1", ONAVE TYPE STRI NG
Par anet er Mbde. I N) ;
String[] parans = { "Duke!" };

/'l 1 nvoke the W5 operation using the JAX-RPC Cal |'s invoke met hod
String result = (String) call.invoke(parans);

Systemout . println(result);
} catch (Exception ex) {
ex. print StackTrace();

The j avax. xm . rpc. Cal | interface:

package j avax.xnl . rpc;

i mport javax.xnl .nanespace. QNaneg;
inmport java.util.lterator;

i mport java.util.List;

i mport java.util.Map;

/**
* The <code>j avax.xm .rpc. Cal |l </code> interface provides support
* for the dynamic invocation of a service endpoint. The
* <code>j avax. xm . rpc. Servi ce</code> interface acts as a factory
* for the creation of <code>Call </code> instances.
*/

public interface Call {

/**

* Standard property: User name for authentication

*/
public static final String USERNAME PROPERTY = "javax.xm .rpc. security. auth. usernanme";
/**

* Standard property: Password for authentication

file:///D|/workspace/wsd-guide/wsd-guide.html (60 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

*/

public static final String PASSWORD PROPERTY = "javax.xm .rpc.security. auth. password";

/**

* Standard property for operation style. This property is

* set to "rpc" if the operation style is rpc; "docunent"

* if the operation style is docunent.

*/

public static final String OPERATI ON_STYLE PROPERTY =
"javax. xnl . rpc. soap. operation. style";

/**

* Standard property for SOAPAction. This bool ean property

* indicates whether or not SOAPAction is to be used. The

* default value of this property is false indicating that

* the SOAPAction is not used.

*/

public static final String SOAPACTI ON_USE PROPERTY =
"javax. xnl . rpc. soap. htt p. soapacti on. use";

/**
* Standard property for SOAPAction. |ndicates the SOAPActi on
* URI if the <code>javax.xnl.rpc.soap. http. soapacti on. use</ code>
* property is set to <code>true</code>.
*/
public static final String SOAPACTI ON_URI _PROPERTY =
"javax. xnl . rpc. soap. http. soapaction. uri";

/**
* Standard property for encoding Style: Encoding style specified
* as a namespace URI. The default value is the SOAP 1.1 encodi ng
* <code>http://schemas. xm soap. or g/ soap/ encodi ng/ </ code>
*/
public static final String ENCODI NGSTYLE URI _PROPERTY =
"javax.xm . rpc. encodi ngstyl e. nanespace. uri ";

*

/
Standard property: This bool ean property is used by a service
client to indicate whether or not it wants to participate in

a session with a service endpoint. If this property is set to
true, the service client indicates that it wants the session

to be maintained. If set to false, the session is not maintained.
The default value for this property is <code>fal se</code>.

L I

-~

public static final String SESSI ON_MAI NTAI N_PROPERTY =
"javax.xmnl . rpc. sessi on. mai ntai n";

/**
* | ndi cat es whet her <code>addPar anet er </ code> and
* <code>set Ret ur nType</ code> net hods
* are to be invoked to specify the parameter and return type
* specification for a specific operation.
*/
publ i ¢ bool ean i sPar anet er AndRet ur nSpecRequi r ed(QName oper at i onNane) ;

*

/
Adds a paraneter type and node for a specific operation.
Note that the client code may not call any
<code>addPar anet er </ code> and <code>set Ret ur nType</ code>
net hods before calling the <code>i nvoke</code> nmethod. In
this case, the Call inplenentation class determ nes the
* paraneter types by using reflection on paraneters, using
* the WBDL description and configured type nmapping registry.
*/
public voi d addParameter (String paramName, QNanme xm Type, Paraneter Mbde
par anet er Mbde) ;

* 0% 2k kX F

/**
* Adds a paraneter type and node for a specific operation.

* This nmethod is used to specify the Java type for either
QUT or | NOUT paraneters.

*

*

* @ar am par anNane Narme of the paraneter

* @aram xm Type XM. dat at ype of the paraneter

* @aram javaType The Java cl ass of the paraneter

file:///D|/workspace/wsd-guide/wsd-guide.html (61 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

* @ar am par anet er Mode Mode of the paraneter-whet her

ki Par anet er Mode. | N, OUT or | NOUT

*/

public voi d addParameter (String paramNanme, QNanme xm Type, C ass javaType,
Par amet er Mode par anet er Mode) ;

/**

* Gets the XML type of a paraneter by nane.

*/

publ i c QNanme get Par anet er TypeByNane(Stri ng par anNane) ;

/**
* Sets the return type for a specific operation. |nvoking
* <code>set Ret ur nType(nul |)</ code> renoves the return
* type for this Call object.
*/
public void setReturnType(Q\ane xm Type);
/**
* Sets the return type for a specific operation.
*/
public voi d set ReturnType(QName xm Type, C ass javaType);

/**

* Gets the return type for a specific operation.
*/

public QNane get ReturnType();

/**

* Renpves all specified paranmeters fromthis <code>Cal |l </ code> instance.
* Note that this nethod renbves only the paraneters and not

* the return type. The <code>set Ret urnType(null)</code> is

* used to renpbve the return type.

*/

public void renoveAl | Paraneters();

/**

* Gets the name of the operation to be invoked using this Call instance.
*/

publ i c QNanme get Oper ati onNane() ;

/**
* Sets the nanme of the operation to be invoked using this
* <code>Cal | </ code> i nstance.
*/

public voi d set Operati onName(QNane oper ati onNane) ;

/**

* Gets the qualified name of the port type.
*/

publ i c QNanme get Port TypeNane() ;

/**
* Sets the qualified name of the port type.
*
/
public voi d setPort TypeNanme(QName port Type);

/**
* Sets the address of the target service endpoint.
* This address nust correspond to the transport specified
* in the binding for this <code>Cal | </ code> instance.
*/
public voi d set Tar get Endpoi nt Address(Stri ng address);

/**

* CGets the address of a target service endpoint.
*/

public String get Tar get Endpoi nt Addr ess();

/**

* Sets the value for a naned property. JAX-RPC specification
* specifies a standard set of properties that nay be passed
* to the <code>Cal |l . set Property</code> met hod.

*/

public void setProperty(String nane, Object val ue);

file:///D|/workspace/wsd-guide/wsd-guide.html (62 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Table 4.1. Usage scenarios of the three Web Service service client styles.

Static stub Dynamic proxy mic Invocation Interface (DII)

Web service not expected to Some changes to the Web Service expected, such Considerable changes to the Web service
change as the location of the service expected, such as:

. Location of the service
. Request/response format
. Data types

Most common scenario Less common Less common

file:///D|/workspace/wsd-guide/wsd-guide.html (63 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

You can generate a stub class The client at runtime creates dynamic proxy stubs This software pattern eliminates the need
either from WSDL (using using the j avax. xnl . rpc. Servi ce interface. The for clients to know in advance a service's
WsDL2Java) or from a service client has a priori knowledge of the WSDL and the | exact name and parameters. A DII client
endpoint interface. A generated service it is going to invoke. It uses the can discover this information at runtime
stub class is required to javax. xnl . rpc. Servi ceFact ory classes to create | using a service broker that can look up the
implement both the service and get the proxy. service's information. This flexibility in
javax. xm . rpc. Stub and the service discovery enables the run-time
service endpoint interface. This system to use service brokers, which can
stub interface provides APIs to adopt varying service discovery

configure stubs by setting mechanisms - ebXML registries, UDDI, etc.
properties like endpoint address,

session, user name, password,

etc.

Given a set of requirements, develop and configure a Web service client that accesses a stateful Web service.
The JAX-RPC specification requires that a service client be able to participate in a session with a service endpoint.

In the JAX-RPC 1.1 version, the session management mechanisms require use of HTTP as the transport in the protocol binding. This
version of the JAX-RPC specification does not specify (or require) session management using SOAP headers given that there is no
standard SOAP header representation for the session information. SOAP based session management may be considered in the future
versions of the JAX-RPC specification.

A JAX-RPC runtime system is required to use at least one of the following mechanisms to manage sessions:

. Cookie based mechanism: On the initial method invocation on a service endpoint, the server side JAX-RPC runtime system sends
a cookie to the service client to initiate a new session. If service client wants to participate in this session, the client side JAX-RPC
runtime system then sends the cookie for each subsequent method invocation on this service endpoint. The cookie associates
subsequent method invocations from the service client with the same session.

URL rewriting involves adding session related identifier to a URL. This rewritten URL is used by the server-side JAX-RPC runtime to
associate RPC invocations to the service endpoint with a session. The URL that is rewritten depends on the protocol binding in use.

. SSL session may be used to associate multiple RPC invocations on a service endpoint as part of a single session.

A session (in JAX-RPC) is initiated by the server-side JAX-RPC runtime system. The server-side JAX-RPC runtime system may use
javax. servlet. http. HtpSessi on (defined in the Servlet specification) to implement support for the HTTP session management.

A service client uses the j avax. xnl . r pc. sessi on. mai nt ai n property (set using the St ub or Cal | interfaces) to indicate whether or not
it wants to participate in a session with a service endpoint. By default, this property is Fal se, so the client does not participate in a
session by default. However, by setting j avax. xnl . r pc. sessi on. mai nt ai n property to Tr ue, the client indicates that it wants to join the
session initiated by the server. In the cookie case, the client runtime system accepts the cookie and returns the session tracking
information to the server, thereby joining the session.

The client code by setting the j avax. xni . r pc. sessi on. mai nt ai n property assumes that it would participate in a session if one is
initiated by the server. The actual session management happens transparent to the client code in the client-side runtime system.

Property j avax. xnl . r pc. sessi on. mai nt ai n accepts objects of j ava. | ang. Bool ean class. This boolean property is used by a service
client to indicate whether or not it wants to participate in a session with a service endpoint. If this property is set to Tr ue, the service
client indicates that it wants the session to be maintained. If set to Fal se, the session is not maintained. The default value for this
property is Fal se.

package j avax.xnl .rpc;

public interface Stub {
...
voi d _setProperty(String nanme, Object val ue);
bj ect _get Property(String nane);
java.util.lterator _getPropertyNames();

package javax.xn .rpc;

public interface Call {
I
voi d setProperty(String name, Object val ue);
Obj ect get Property(String nane);
bool ean renoveProperty(String nane);
java.util.lterator getPropertyNanmes();

The service endpoint class may implement the following Ser vi celLi f ecycl e interface:

file:///D|/workspace/wsd-guide/wsd-guide.html (64 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

package j avax.xml .rpc. server;

public interface Servicelifecycle {
void init(Object context) throws ServiceException;
voi d destroy();

If the service endpoint class implements the Servi celLi f ecycl e interface, the servlet container based JAX-RPC runtime system is
required to manage the lifecycle of the corresponding service endpoint instances. The lifecycle of a service endpoint instance is realized
through the implementation of the i ni t and dest r oy methods of the Ser vi celLi f ecycl e interface.

For service endpoint components deployed on a servlet container based JAX-RPC runtime system, the cont ext parameter in the

Servi ceLi fecycl e. i nit method is required to be of the Java type j avax. xm . rpc. server. Servl et Endpoi nt Cont ext . The

Ser vl et Endpoi nt Cont ext provides an endpoint context maintained by the underlying servlet container based JAX-RPC runtime system.
Note that the JAX-RPC specification specifies the standard programming model for a servlet based endpoint. The goal of JAX-RPC
specification is not to define a more generic abstraction for the endpoint context or session that is independent of any specific
component model, container and protocol binding. Such generic abstractions and endpoint model are outside the scope of the JAX-RPC
specification. The following code snippet shows the Ser vl et Endpoi nt Cont ext interface:

package j avax.xnl .rpc. server;

public interface Servl et Endpoi nt Cont ext {
public java.security.Principal getUserPrincipal();
publ i ¢ bool ean i sUserlnRol e(String role);
public javax.xm .rpc. handl er. MessageCont ext get MessageCont ext () ;
public javax.servlet.http. HtpSession getHttpSession();
public javax.servlet. Servl et Cont ext get Servl et Cont ext();

A servlet container based JAX-RPC runtime system is required to implement the Ser vl et Endpoi nt Cont ext interface. The JAX-RPC
runtime system is required to provide appropriate session, message context, servlet context and user principal information per method
invocation on service endpoint instances.

The get Ht t pSessi on method returns the current HTTP session (as a j avax. servl et. http. Ht t pSessi on). When invoked by the service
endpoint instance within a remote method implementation, the get Ht t pSessi on returns the HTTP session associated currently with this
method invocation. This method is required to return nul | if there is no HTTP session currently active and associated with this service
endpoint instance. An endpoint class should not rely on an active HTTP session being always there; the underlying JAX-RPC runtime
system is responsible for managing whether or not there is an active HTTP session.

The get Ht t pSessi on method throws JAXRPCExcept i on if it is invoked by a non HTTP bound endpoint. The JAX-RPC specification does
not specify any transport level session abstraction for non-HTTP bound endpoints.

HTTP sesion timeout

To change the default session timeout globally, add the following element in your web. xm (service endpoint implementation deployment
descriptor):

<web- app>

<sessi on- confi g>
<!-- set global default timeout to 15 minutes -->
<sessi on-ti neout >15</ sessi on-ti meout >

</ sessi on- confi g>

</ web- app>

The sessi on-ti neout element defines the default session timeout interval for all sessions created in this web application. The specified
timeout must be expressed in a whole number of MINUTES. If the timeout is O or less, the container ensures the default behaviour of
sessions is never to timeout. If this element is not specified, the container must set its default timeout period.

The full syntax:

<l--

The session-config el enent defines the session paraneters for this
web application.

-->

file:///D|/workspace/wsd-guide/wsd-guide.html (65 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Explain the advantages and disadvantages of a WSDL to Java vs. a Java to WSDL development approach.
WSDL to Java:

Convenient when WSDL document already exists

More powerful

Requires WSDL and XML Schema knowledge

Easy to stray outside of WS-1 BP 1.0, harming interoperability

PwnNpE

Java to WSDL:

1. Easier to use
2. No need to learn WSDL or XML Schema
3. Less control over published service contract

Describe the advantages and disadvantages of web service applications that use either synchronous/request
response, one-way RPC, or non-blocking RPC invocation modes.

Synchrous request-response mode:
. Client's thread blocks until a return value or exception is returned
One-way RPC mode:

. Client's thread continues processing
. No return value or exception is expected

Example:

Non-blocking RPC invocation mode:

. Aclient invokes a remote procedure and continues in its thread without blocking
. Later, the client processes the remote method return by performing a blocked receive call or by polling for the return value

Use the JAX-RPC Handler API to create a SOAP message handler, describe the function of a handler chain, and
describe the role of SAAJ when creating a message handler.

file:///D|/workspace/wsd-guide/wsd-guide.html (66 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

JAX-RPC handlers allow you to intercept a SOAP message at various times during a service invocation. Handlers are similar to servlet
filters. Handlers can exist on both the client and the server side. If you use JAX-RPC on the client side, you can have a handler process a
SOAP request message right before it goes on the network, and you can process the response message before it is returned to the
client. Similarly, you can intercept an incoming SOAP request message on the server before invoking the service implementation, as well
as the outgoing response.

Several handlers can be combined into what is called a "handler chain". Each handler processes the SOAP message, which is then passed
on to the next handler in the chain. The exact sequence in which this happens is configurable.

To develop a JAX-RPC handler, you simply create a class that implements the j avax. xm . r pc. handl er. Handl er interface. It has three
methods to handle SOAP requests, responses and faults, respectively.

Handlers are defined in the JAX-RPC specification. However, the "Enterprise Web Services" (JSR109) specification describes how they are
used in a J2EE environment and adds some clarification to the way handlers are managed by the application server. We will assume that
your Web service runs on a J2EE application server and hence we will follow the definitions of JSR109 as well as JAX-RPC.

Handlers are shared across multiple service invocations. In other words, they can store information that is only valid for a particular
client or server instance. You can compare this to the way servlets are handled. When a new instance of a handler is created, its
init(...) method is called. That allows you to set up things that you can use for multiple invocations. Before the handler is removed,
the destroy() method is called, so that you can do cleanup in there. As a rule of thumb, however, you should avoid storing any state in
a handler altogether.

Handlers can be configured either programmatically or, in case you are running a J2EE application server, they are configured in the Web
service deployment descriptor. Handlers and handler chains are defined on a per service basis. They can be defined in both the server
and client side deployment descriptors. Listing below shows the deployment descriptor for our sample service, showing how a handler
class called handl er. Per f or manceHandl er is registered for the Hel | oWor | dSer vi ce service (webservi ces. xnl):

<webser vi ces>
<webser vi ce-descri pti on>
<webser vi ce-descri pti on- name>Hel | oWor | dSer vi ce</ webser vi ce- descri pti on- nane>
<wsdl -fi | e>VEB- | NF/ wsdl / Hel | oWor | d. wsdl </ wsdl -fi | e>
<j axr pc- mappi ng- fi | e>WEB- | NF/ nappi ng. xm </ j axr pc- mappi ng-fil e>
<port - conponent >
<port - conponent - nane>Hel | oWbr | d</ port - conponent - name>
<wsdl - port >
<nanmespaceURl >htt p: / / pack</ nanespaceURIl >
<l ocal part >Hel | oWbor| d</ | ocal part>
</ wsdl| - port>
<servi ce- endpoi nt -i nt er f ace>pack. Hel | oWor | d</ ser vi ce- endpoi nt -i nt er f ace>
<servi ce-i npl - bean>
<servl et-link>pack_Hel | oWor | d</ servl et -1i nk>
</ servi ce-i npl - bean>
<handl| er >
<handl| er - nane>handl er . Per f or menceHandl er </ handl er - nane>
<handl er - cl ass>handl er. Per f or manceHandl| er </ handl er - cl ass>
</ handl| er >
</ port - conponent >
</ webservi ce-descri pti on>
</ webservi ces>

Multiple handlers would be defined here to form a chain as mentioned above.

If multiple handlers that are involved in one service invocation need to share information, they can do so by adding properties to the
message context as it is passed from handler to handler. This message context will be available from the request to the response. In
other words, we can use it to store information on an incoming request that we can reuse when the response comes back.

Now let's look at how you can create a handler that measures the response time of your service implementation. We will assume that
you have created a Hel | oWor | d web service, which simply returns a St ri ng message. Listing below shows the code for the service
implementation bean:

public class Hellowrld {
public String hell oWrld(String nessage) {
return "Hello " + nessage;
}

The handler will be configured for the server that hosts the Web service. It will be invoked on both the request and the response
message, so that we can measure the elapsed time.

file:///D|/workspace/wsd-guide/wsd-guide.html (67 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Each handler must implement the j avax. xnl . r pc. handl er . Handl er interface. Or, you can make your life a bit easier by simply
inheriting the j avax. xm . rpc. handl er. Generi cHandl er class, which provides default implementations for all the methods. For storing
performance results, we use a class called Logger, which we set up in the i ni t () method. Moreover, the application server passes a
javax. xm . r pc. handl er. Handl er | nf o object into this method, which we need to cache as well:

public class PerformanceHandl er extends GenericHandl er {

protected HandlerIinfo info = null;
prot ect ed Logger |ogger = null;

public void init(Handl erlnfo arg) {
info = arg;
| ogger = Logger. getLogger("c://tenp//Hell oWrl dServi ceLog");

}
public void destroy() {
try {
| ogger. cl ose();
} catch (Exception x) {}
}

Note that we close the Logger object when the handler instance is destroyed.

Each handler implements the handl eRequest method, which is invoked when a request message arrives:

publ i c bool ean handl eRequest (MessageCont ext context) {
try {
Date startTime = new Date();
context.setProperty("startTinme", startTinme);
} catch (Exception x) {
X. print StackTrace();
}

return true;

Here you can see that we store the current time in the message context as a property called "st art Ti ne". The application server will
guarantee that the same message context object is passed into the handl eResponse method, so that we can measure the elapsed time
there:

publ i ¢ bool ean handl eResponse(MessageCont ext context) {

try {
Date startTime = (Date)context.getProperty("startTinme");
Date endTi me = new Date();
| ong el apsedTine = endTine.getTime() - startTi nme.getTine();
| ogger. wite("Elapsed time is " + el apsedTi me+"\n");

} catch (Exception x) {
X. print StackTrace();

}

return true;

JAX-RPC defines a mechanism with which you can manage service invocations by intercepting request and response messages without
having to change the actual service consumer or provider. In J2EE, you can configure handlers in a deployment descriptor, without
writing any code, providing you with a powerful way of controlling SOAP messages as they pass through your system.

Handlers let you access/modify SOAP request and response messages, but typically used to process service contexts in SOAP header
blocks.

Possible example handlers: encryption, decryption, authentication, authorization, logging, auditing, caching.

Handlers are pluggable and chainable through standardized programming API, portable across implementations. Handler has its own
lifecycle: JAX-RPC runtime system callsinit(...), destroy() of a handler. Handler instances can be pooled (stateless).
MessageCont ext is used to share properties among handlers in a handler chain.

On the service client side: a request handler is invoked before an RPC request is communicated to the target service endpoint, a
response or fault handler is invoked before an RPC response is returned to the client.

file:///D|/workspace/wsd-guide/wsd-guide.html (68 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

On a service endpoint: a request handler is invoked before an RPC request is dispatched to the target service endpoint, a response or
fault handler is invoked before communication back to the service client from the target service endpoint.

javax. xm . rpc. handl er. Handl er interface is required to be implemented by a SOAP message handler:

or extend Generi cHandl er abstract class:

Example of generic SOAP message handler:

file:///D|/workspace/wsd-guide/wsd-guide.html (69 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Sample handler which extends Generi cHandl er :

Configurable on both client and endpoint side:

. Server side in webservi ces. xm file.
. Client side in webservi cesclient.xm orweb. xm or ejb-jar.xnl file (inside the service-ref tag).

webservi ces. xml (server-side config):

file:///D|/workspace/wsd-guide/wsd-guide.html (70 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

</ handl er >

</ port - conponent >
</ webservi ce-descri pti on>
</ webservi ces>

Observe that there are 2 handlers defined to run in the order (for incoming message): server 1 -> server 2. Also observe that the server-
side Handler Chain is associated with a particular 'Port ' of a Web Service by port - conponent tag.

Server-side handler:

package servi ce;

i mport javax.xnl . nanespace. QNaneg;
i nport javax.xml . rpc. handl er. soap. SOAPMessageCont ext ;
i mport javax.xm .rpc. JAXRPCExcepti on;
i mport javax.xnm .rpc. handl er. *;
i mport javax.xmnl .soap. *;
/**
* This class inplenments a handl er by extending the abstract
* class javax.xnl .rpc. handl er. Generi cHandl er.
*/
public class ServerHandl erl extends GenericHandl er {
private Handl erl nfo handl erl nf o;
private String nane;

public void init(Handl erlinfo info) {
handl erl nfo = info;
/'l this paranmeter was configured in 'webservices.xm'
nanme = (String) info.getHandl erConfig().get("nanme");
System out. println("ServerHandl erl: nanme = " + nane);

}

/*
* This nmethod is declared abstract in GenericHandl er and nust
* be defined here.
*/
public QNanme[] getHeaders() {
return handl erl nfo. get Header s() ;

}

/*

* This handler will check incom ng nmessages for the header

* specified in 'webservices.xm'. It doesn't do anything with the

* information besides output it, but it could be used to determ ne
* what type of processing should be performed on this nmessage
* before passing on to the ultinmate recipient.

*/

publ i ¢ bool ean handl eRequest (MessageCont ext context) {
/1

}

webservi cesclient.xm orweb.xm orejb-jar.xm (client-side config):

<webser vi cescl i ent >
<servi ce-ref>
<descri pti on>WSDL Servi ce StockQuoteService</description>
<servi ce-ref - name>ser vi ce/ St ockQuot eSer vi ce</ servi ce-r ef - nane>
<servi ce-interface>sanpl e. St ockQuot eServi ce</ servi ce-interface>
<wsdl - fi | e>VEB- | NF/ wsdl / Sanpl e. wsdl </ wsdl -fil e>
<j axr pc- mappi ng-fi | e>VEEB- | NF/ mappi ng. xm </ j axr pc- mappi ng-fil e>
<servi ce- ghane>
<nanespaceURl >ht t p: / / sanpl e</ nanespaceURl >
<l ocal part >St ockQuot eSer vi ce</ | ocal part >
</ servi ce- gnane>
<port - conponent - ref >
<servi ce- endpoi nt -i nt er f ace>sanpl e. Get Quot ePor t Type</ ser vi ce- endpoi nt -

file:///D|/workspace/wsd-guide/wsd-guide.html (71 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

interface>
</ port - conponent - r ef >
<handl er >

<handl er - nane>cl i ent 1</ handl| er - nane>
<handl er-cl ass>cl i ent. C i ent Handl er 1</ handl er - cl ass>
<i nit-parane
<par am name>nane</ par am nane>
<par am val ue>My C i ent Handl er </ param val ue>
</init-paranr
<soap- header >
<nanespaceURl >ht t p: // sanpl e</ nanespaceURIl >
<l ocal part >Get Quot e</ | ocal part >
</ soap- header >
<soap-r ol e>Loggi ngHandl er </ soap-r ol e>
<port - name>Cet Quot e</ port - nanme>
</ handl er >
</ service-ref>
</ webservi cescl i ent >

NOTE: Unlike the server-side handlers, client-side handlers are associated with servi ce-ref (service references) instead of port -
conponent (port component references). However, they have a configurable parameter, port - nane, by which handlers can be associated
with the port of the service which is invoked. With port names, you can restrict which handlers to run when a service endpoint (WSDL
port) is invoked. In the above case, the handler ‘cl i ent 1" is only run if ‘Get Quot e’ is invoked.

Client-side handler:

package cli ent;

i mport javax.xm . nanespace. QNane;

i mport javax.xm .rpc. handl er. soap. SOAPMessageCont ext ;
i mport javax.xml .rpc. JAXRPCExcepti on;

i mport javax.xm .rpc. handl er. *;

i mport javax.xn .soap. *;

/**
* This class inplenents a handl er by extending the abstract
* class javax.xm . rpc. handl er. Generi cHandl er.
*/
public class dientHandl erl extends CenericHandl er {
Handl er | nf o handl er | nf o;
String nane;

public void init(Handl erlinfo info) {
handl erl nfo = info;
/1 this paranmeter was configured in depl oynent descriptor
name = (String) info.getHandl erConfig().get("nanme");

System out.println("CientHandl erl: name = + nane) ;

}

/*
* This nethod is declared abstract in GenericHandl er and nust
* be defined here. Another way to inplenment is to keep an array
* of QNanes and set themin the init() nmethod to info.getHeaders().
*/
public QNanme[] getHeaders() {
return handl erl nfo. get Header s() ;

}

public bool ean handl eRequest (MessageCont ext context) {
try {
/'l get the soap header
SOAPMessageCont ext snt = (SOAPMessageCont ext) cont ext;
SCAPMessage nessage = snt. get Message();
SOAPPart soapPart = nmessage. get SOAPPart () ;
SOAPEnvel ope envel ope = soapPart. get Envel ope();
SCAPHeader header = nmessage. get SOAPHeader () ;
if (header == null) {
header = envel ope. addHeader () ;

}

/1 Add | ogger element w th mustUnderstand="1".
/1 WII use the default actor "next" for this exanple, otherw se

file:///D|/workspace/wsd-guide/wsd-guide.html (72 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

/1 Use | oggerEl enent.setActor(String actorURI) to define actor.

/1 The elenent will contain a ficticuous |log |evel for

[/ this exanpl e.

Systemout. println("dientHandl er1l: addi ng | oggerEl enent");

SQAPHeader El enent | ogger El enent = header. addHeader El enent (

envel ope. cr eat eNanme("| ogi nfo", "ns1",

"http://exanple.conl"));

| ogger El ement . set Must Under st and(true);

| ogger El ement . set Val ue("10");

/] Add sinple el ement describing the client naking the request.
System out. println("dientHandl er1l: addi ng nameEl ement") ;
SQAPHeader El ement naneEl ement = header. addHeader El enent (
envel ope. cr eat eNane("cl i ent nane", "ns1",
"http://exanple.conl"));
naneEl ement . addText Node(" Duke") ;

} catch (Exception e) {
t hr ow new JAXRPCException(e);
}

/] return true to continue nessage processing
return true;

this handler will add following headers to processed SOAP message:

<?xm version="1.0"?>

<soap: Envel ope xm ns: soap="http://ww. w3. or g/ 2001/ 12/ soap- envel ope" >
<soap: Header >

<nsl:loginfo xm ns: ns1="http://exanpl e.com "
soap: nust Under st and="1"
soap: actor="http://schemas. xm soap. or g/ soap/ act or/ next " >
10

<n/s1l:1 ogi nf o>

<nsl:clientnane xm ns: nsl="http://exanpl e.conl"
soap: actor="http://schemas. xnm soap. or g/ soap/ act or/ next " >
Duke

</ ns1l:cli ent nane>

</ soap: Header >
<soap: Body>

</ soap: Body>
</ soap: Envel ope>

A handler chain represents an ordered list of handlers. This grouping helps you define policies that you want associated with the handler
invocation model. Examples of such policies include order of invocation, style of invocation (for example, a one-way call invokes only
handl eRequest () ; no handl eResponse()), etc. Another possible policy you can set on the handler chain: A handler chain can invoke a
handler based on the gnane of the outermost element of a SOAP header. This association can be configured to the handler through the
Handl er.init(...) method passing a Handl er | nf o object. The handler chain continues processing the handlers only if the current
processing handler returns t r ue. You can associate a handler chain with SOAP actors (or roles) by specifying the URIs of the actors. By
default, a handler chain is always associated with the special SOAP actor "htt p: // schemas. xm soap. or g/ soap/ act or/ next ". A server-
side handler chain is registered on a per service endpoint basis, as indicated by the qualified name of the WSDL port.

package j avax. xnl .rpc. handl er;

i nport java.util.List;
i mport java.util.Map;

public interface Handl er Chai n extends List {

publ i ¢ bool ean handl eRequest (MessageCont ext context);
publ i ¢ bool ean handl eResponse(MessageCont ext cont ext);
publ i ¢ bool ean handl eFaul t (MessageCont ext cont ext);

file:///D|/workspace/wsd-guide/wsd-guide.html (73 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

public void init(Mp config);
public void destroy();
public void setRoles(String[] soapActorNanes);

public java.lang. String[] getRoles();

In the following example, three Handl er instances Handl er _1, Handl er _2 and Handl er _3 are registered (in this order) in a single
Handl er Chai n instance that is used for both request and response processing. The default invocation order for these handlers is as
follows:

Handl er _1. handl eRequest
Handl er _2. handl eRequest
Handl er _3. handl eRequest
Handl er _3. handl eResponse
Handl er _2. handl eResponse
Handl er _1. handl eResponse

enprwNE

Handlers Concepts

A Handler can be likened to a Servlet Filter in that it is business logic that can examine and potentially modify a request before it is
processed by a Web Service component. It can also examine and potentially modify the response after the component has processed the
request. Handlers can also run on the client before the request is sent to the remote host and after the client receives a response.

JAX-RPC Handlers are specific to SOAP requests only and cannot be used for other non-SOAP Web services. Handlers may be transport
independent. For instance, a Handler as defined by JAX-RPC may be usable for SOAP/JMS in addition to SOAP/HTTP if a JMS protocol
binding was available. Handlers for non-SOAP encodings have not been defined yet.

Handlers are service specific and therefore associated with a particular Port component or port of a Service interface. This association is
defined in the deployment descriptors. They are processed in an ordered fashion called a Handler Chain, which is defined by the
deployment descriptors.

There are several scenarios for which Handlers may be considered. These include application specific SOAP header processing, logging,
and caching. A limited form of encryption is also possible. For application specific SOAP header processing, it is important to note that
the client and server must agree on the header processing semantics without the aid of a WSDL description that declares the semantic
requirements. Encryption is limited to a literal binding in which the SOAP message part maps to a SOAPEl enent . In this case, a value
within the SOAPEI enent may be encrypted as long as the encryption of that value does not change the structure of the SOAPEI enent .

Some Handler scenarios described within the JAX-RPC specification are not supported by this specification. For example, auditing cannot
be fully supported because there is no means for a Handler to obtain the Principal. The secure stock quote example cannot be supported
as stated because encrypting the body would prevent the container from determining which Port component the request should be
directed to and therefore which Handler should decrypt the body.

A Handler always runs under the execution context of the application logic. On the client side, the Stub/proxy controls Handler
execution. Client side Handlers run after the Stub/proxy has marshaled the message, but before container services and the transport
binding occurs. Server side Handlers run after container services have run including method level authorization, but before
demarshalling and dispatching the SOAP message to the endpoint. Handlers can access the j ava: conp/ env context for accessing
resources and environment entries defined by the Port component the Handler is associated with.

Handlers are constrained by the J2EE managed environment. Handlers are not able to re-target a request to a different component.
Handlers cannot change the WSDL operation nor can Handlers change the message part types and number of parts. On the server,
Handlers can only communicate with the business logic of the component using the MessageCont ext . On the client, Handlers have no
means of communicating with the business logic of the client. There is no standard means for a Handler to access the security identity
associated with a request, therefore Handlers cannot portably perform processing based on security identity.

Handlers are associated with the Port component on the server and therefore run in both the web and EJB containers.

J2EE applications that define one or more port components or service references include WSDL descriptions for each of them as well as
application logic and (optionally) SOAP message handlers associated with them. In order for such applications to behave predictably, all
three elements (description, handlers and application logic) must be well aligned. Developers should program handlers carefully in order
not to create invalid SOAP envelope format that contradicts WS-1 BP 1.0 requirements or violates the message schema declared in the
WSDL. In particular, containers cannot provide any guarantees beyond those specified as part of the interoperability requirements on the
behavior of an application that violates the assumptions embedded in a WSDL document either in its business logic or in SOAP message
handlers.

Handlers Scenarios

Scenario 1: Handlers must be able to transform the SOAP header. One example is the addition of a SOAP header for application specific
information, like cust oner | d, by the handler.

Scenario 2: Handlers must be able to transform just parts of the body. This might include changing part values within the SOAP body.
Encryption of some parameter values is an example of this scenario.

file://ID|/workspace/wsd-guide/wsd-guide.html (74 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Scenario 3: Handlers must be able to just read a message where no additions, transformations, or modification to the message is made.
Common scenarios are logging, metering, and accounting.

Handlers Programming Model

A Web Services for J2EE provider is required to provide all interfaces and classes of the j avax. xnm . r pc. handl er package. The

Handl er | nf o set Handl er Confi g() and get Handl er Confi g() methods do not affect the container's Handler request processing. A Web
Services for J2EE provider is not required to provide an implementation of Handl er Regi st ry. This functionality is specific to the
container. A Web Services for J2EE provider is required to provide an implementation of MessageCont ext . A Web Services for J2EE
provider is required to provide all the interfaces of the j avax. xm . r pc. handl er. soap package. The provider must also provide an
implementation of the SOAPMessageCont ext interface. The programming model of a Port component can be single-threaded or multi-
threaded. The concurrency of a JAX-RPC Handler must match the concurrency of the business logic it is associated with. Client handlers
may need to support multi-threaded execution depending on the business logic which is accessing the Port. Handlers must be loaded
using the same class loader the application code was loaded with. The class loading rules follow the rules defined for the container the
Handler is running in.

The i nit and destr oy methods of the Handl er interface allows the container to notify a Handl er instance of impending changes in its
state. The Handl er may use the notification to prepare its internal state for the transition. The container is required to call the i nit and
dest r oy methods as described. The container must call the i ni t method before it can start dispatching requests to the

handl eRequest (), handl eResponse(), and handl eFaul t () methods of the Handl er . The Handl er may use the container notification to
ready its internal state for receiving requests. The container must notify the Handl er of its intent to remove the instance from the
container's working set by calling the dest r oy method. A container must not call the dest r oy method while a request is being processed
by the Handl er instance. The container must not dispatch additional requests to the Handl er interface methods after the destr oy
method is called. As defined by JAX-RPC, a Runti meExcepti on (other than SOAPFaul t Excepti on) thrown from any method of the

Handl er results in the dest r oy method being invoked and transition to the "Does Not Exist" state. Pooling of Handl er instances is
allowed, but is not required. If Handl er instances are pooled, they must be pooled by Port component. This is because Handl er s may
retain non-client specific state across method calls that are specific to the Port component. For instance, a Handl er may initialize internal
data members with Port component specific environment values. These values may not be consistent when a single Handl er type is
associated with multiple Port components. Any pooled instance of a Port component's Handl er in a "Method Ready" state may be used to
service the handl eRequest (), handl eResponse(), and handl eFaul t () methods. It is not required that the same Handl er instance
service both the handl eRequest () and handl eResponse() or handl eFaul t () method invocations of any given request.

A developer is not required to implement a Handl er . Handlers are another means of writing business logic associated with processing a
Web services request. A developer may implement zero or more Handlers that are associated with a Port component and/or a Service
reference. If a developer implements a Handl er, they must follow the requirements outlined in this section. A Handl er is implemented
as a stateless instance. A Handl er does not maintain any message processing (client specific) related state in its instance variables
across multiple invocations of the handl e_XXX method. A Handl er class must implement the j avax. xm . r pc. handl er . Handl er
interface:

package j avax.xml .rpc. handl er;

public interface Handl er {
bool ean handl eRequest (MessageCont ext cont ext);
bool ean handl eResponse(MessageCont ext context);
bool ean handl eFaul t (MessageCont ext cont ext);
I

A Handl er. handl e<acti on>() method may access the component's environment entries by using JNDI lookup of the "j ava: conp/ env"
contenxt and accessing the env- ent ry- nane defined in the deployment descriptor by performing a JNDI lookup. The container may
throw a j ava. |l ang. |1 | egal St at eExcepti on if the environment is accessed from any other Handl er method and the environment is not
available. In addition, the Handl er may use j ava. uti|.Map Handl er | nf 0. get Handl er Confi g() method to access the Handler's i ni t -
par ans declared in the deployment descriptor. The Handl er. i ni t () method must retain the information defined by

Handl er | nf 0. get Header s() . A Handl er implementation must implement the get Header s() method to return the results of the

Handl er I nf 0. get Header s() method. The headers that a Handl er declares it will process (i.e. those returned by the

Handl er . get Header s() method must be defined in the WSDL definition of the service. A Handl er implementation should test the type of
the MessageCont ext passed to the Handl er in the handl e<acti on>() methods. Although this specification only requires support for
SOAP messages and the container will pass a SOAPMessageCont ext in this case, some providers may provide extensions that allow other
message types and MessageCont ext types to be used. A Handl er implementation should be ready to accept and ignore message types
which it does not understand. A Handl er implementation must use the MessageCont ext to pass information to other Handl er
implementations in the same Handler Chain and, in the case of the JAX-RPC service endpoint, to the Service Implementation Bean.

package javax. xnl.rpc. handl er;

public interface MessageContext {
voi d setProperty(String name, Object val ue);
Obj ect get Property(String nane);
voi d renoveProperty(String nane);
bool ean cont ai nsProperty(String nane);
java.util.lterator getPropertyNanmes();

file:///D|/workspace/wsd-guide/wsd-guide.html (75 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

A container is not required to use the same thread for invoking each Handl er or for invoking the Service Implementation Bean. A

Handl er may access the env-entry elements of the component it is associated with by using JNDI to lookup an appropriate subcontext
of j ava: conp/ env. Access to the j ava: conp/ env contexts must be supported from the i ni t () and handl e<acti on>() methods. Access
may not be supported within the destroy() method. A Handl er may access transactional resources defined by a component's r esour ce-
ref s. Resources are accessed under a transaction context. A Handl er may access the complete SOAP message and can process both
SOAP header blocks and body if the handl e<acti on>() method is passed a SOAPMessageCont ext :

package j avax.xnl .rpc. handl er. soap;

public interface SOAPMessageCont ext extends MessageContext {
SOAPMessage get Message();
voi d set Message(SOAPMessage nessage);
I

A SOAPMessageCont ext Handl er may add or remove headers from the SOAP message. A SOAPMessageCont ext Handl er may modify the
header of a SOAP message if it is not mapped to a parameter or if the modification does not change value type of the parameter if it is
mapped to a parameter. A Handler may modify part values of a message if the modification does not change the value type. Handlers
that define application specific headers should declare the header schema in the WSDL document for the component they are associated
with, but are not required to do so.

A container is required to provide an instance of a j ava. uti | . Map object in the Handl er | nf o instance:

package j avax.xmnl .rpc. handl er;

public class Handlerlnfo inplenments java.io. Serializable {
public Handlerinfo() { }
public Handl erl nfo(C ass handl erd ass, java.util.Map config, QNanme[] headers) ({

}

public void setHandl erC ass(C ass handlerClass) { ... }
public C ass getHandlerdass() { ... }

public voi d setHandl er Config(java.util.Mp config) { ... }
public java.util.Mp getHandl erConfig() { ... }

public QNanme[] getHeaders() { ... }

public voi d set Headers(QNanme[] headers) { ... }

The Handl er | nf 0. get Header s() method must return the set of soap- header elements defined in the deployment descriptor. The Map
object must provide access to each of the Handl er's i ni t - par amname/value pairs declared in the deployment descriptor as

java.l ang. String values. The container must provide a unique Handl er | nf o instance and Map config instance for each Handl er
instance. A unique Handl er instance must be provided for each Port component declared in the deployment descriptor. The container
must call the i ni t () method within the context of a Port component's environment. The container must ensure the Port component's
env-entrys are setup for the i nit method to access. The container must provide a MessageCont ext type unique to the request type.
For example, the container must provide a SOAPMessageCont ext to the handl e<acti on>() methods of a Handl er in a handler chain
when processing a SOAP request. The SOAPMessageCont ext must contain the complete SOAP message:

package com exanpl e;
public class MySOAPMessageHandl er extends javax.xm .rpc. handl er. Generi cHandl er {
publ i c MySOAPMessageHandler() { ... }

public bool ean handl eRequest (MessageCont ext context) {
try {
SCAPMessageCont ext snt = (SOAPMessageCont ext) cont ext ;
SOAPMessage nsg = snt. get Message();
SOAPPart sp = nsg. get SOAPPart () ;
SQAPEnvel ope se = sp. get Envel ope();
SOAPHeader sh = se. get Header () ;
[/ Process one or nore header bl ocks
...
/] Next step based on the processing nodel for this
/1 handl er
} catch(Exception ex) {
/] throw exception
}
}

/1 Ot her nethods: handl eResponse, handl eFault, init, destroy

file:///D|/workspace/wsd-guide/wsd-guide.html (76 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

The container must share the same MessageCont ext instance across all Handl er instances and the target endpoint that are invoked
during a single request and response or fault processing on a specific node. The container must setup the Port component's execution
environment before invoking the handl e<acti on>() methods of a handler chain. Handlers run under the same execution environment as
the Port component's business methods. This is required so that handlers have access to the Port component's j ava: conp/ env context.

Chapter 5. SOAP and XML Processing APIs (JAXP, JAXB, and SAAJ)
Describe the functions and capabilities of the APIs included within JAXP.

SAX

SAX allows you to process a document as it's being read, which avoids the need to wait for all of it to be stored before taking action.

Consider the following XML code snippet:

A SAX processor analyzing this code snippet would generate, in general, the following events:

The SAX API allows a developer to capture these events and act on them.

SAX processing involves the following steps:

Create an event handler.

Create the SAX parser.

Assign the event handler to the parser.

Parse the document, sending each event to the handler.

PonbPE

Create the parser

This example uses a pair of classes, SAXPar ser Fact ory and SAXPar ser, to create the parser, so you don't have to know the name of the
driver itself. First declare the XM_Reader , xrm Reader , and then use SAXPar ser Fact ory to create a SAXPar ser . It's the SAXPar ser that
gives you the XM_Reader :

file:///D|/workspace/wsd-guide/wsd-guide.html (77 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Set validation options

Turn off validation for any parser the SAXPar ser Fact ory creates by setting the validating property:

Set the content handler

The parser has to send its events to a Cont ent Handl er :

file:///D|/workspace/wsd-guide/wsd-guide.html (78 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

To keep things simple, SurveyReader is both the main application and the content handler, so create a new instance of it and set it as
the Cont ent Handl er using the XM_Reader . set Cont ent Handl er () method:

Parse the | nput Sour ce

To actually parse a file you need an | nput Sour ce:

This SAX class wraps whatever data you're going to process. Now you're ready to actually parse the file. The parse() method takes the

file:///D|/workspace/wsd-guide/wsd-guide.html (79 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

file, wrapped in the | nput Sour ce, and processes it, sending each event to the Cont ent Hander :

i mport org.xmnl . sax. | nput Sour ce;

xm Reader = saxParser. get XM_Reader () ;
xm Reader . set Cont ent Handl er (new SurveyReader ());
| nput Sour ce source = new | nput Sour ce("surveys. xm");
xm Reader . par se(source) ;
} catch (Exception e) {

Set an ErrorHandl er

You can create an error handler just as you created a content handler. Normally, you would create this as a separate instance of

Er r or Handl er, but to simplify the example, you'll include error handling right in Sur veyResul t s. This dual-usage is possible because the
class extends Def aul t Handl er , which includes implementations of both the Cont ent Handl er methods and the Er r or Handl er methods.
Set a new Error Handl er just as you set the Cont ent Handl er :

xm Reader . set Cont ent Handl er (new SurveyReader ());
xm Reader . set Err or Handl er (new Sur veyReader ());
| nput Sour ce source = new | nput Sour ce("surveys.xm");

Event handlers and the SAX events
. startDocunent ()

Start by noting the beginning of the document using the st art Docunent () event. This event, like the other SAX events, throws a
SAXException:

i mport org. xnl .sax. SAXExcepti on;
public class SurveyReader extends Defaul t Handl er {
public void startDocunent () throws SAXException {

Systemout. println("Tallying survey results...");
}

public static void main (String args[]) {
XM_Reader xm Reader = null;

. startEl enent()

For each element, the example echoes back the name that is passed to the st art El ement () event. The parser actually passes
several pieces of information for each element:

o The qualified name, or gqNane. This is actually a combination of namespace information, if any, and the actual name of the
element. The gNane also includes the colon (:) if there is one - for example, r evi sed: questi on.

o The namespace URI. An actual namespace is a URI of some sort and not the alias that gets added to an element or
attribute name. For example, htt p: // ww. exanpl e. comas opposed to simply revi sed: .

o The local name. This is the actual name of the element, such as questi on. If the document doesn't provide namespace
information, the parser may not be able to determine which part of the gNane is the | ocal Nane.

o Any attributes. The attributes for an element are actually passed as a collection of objects.

Start by listing the name of each element:

import org.xm .sax. Attri butes;

public class SurveyReader extends Defaul t Handl er {

public void startDocunent () throws SAXException {
Systemout.println("Tallying survey results...");
}

file:///D|/workspace/wsd-guide/wsd-guide.html (80 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

The start El enent () event also provides access to the attributes for an element. They are passed in within an Attri but es data
structure. You can retrieve an attribute value based on its position in the array, or based on the name of the attribute:

. endEl ement ()

You'll find plenty of good reasons to note the end of an element. For example, it might be a signal to process the contents of an
element. Here you'll use it to pretty print the document to some extent, indenting each level of elements. The idea is to increase
the value of the indent when a new element starts, decreasing it again when the element ends:

file:///D|/workspace/wsd-guide/wsd-guide.html (81 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

. characters()

Now that you've got the elements, go ahead and retrieve the actual data using char act er s() . Take a look at the signature of this
method for a moment:

Notice that nowhere in this method is there any information whatsoever as to what element these characters are part of. If you
need this information, you're going to have to store it. This example adds variables to store the current element and question
information. (It also removes a lot of extraneous information that was displayed.)

Note two important things here:

n Range: The charact ers() event includes more than just a string of characters. It also includes start and length
information. In actuality, the ch character array includes the entire document. The application must not attempt to read
characters outside the range the event feeds to the characters() event.

Frequency: Nothing in the SAX specification requires a processor to return characters in any particular way, so it's possible
for a single chunk of text to be returned in several pieces. Always make sure that the endEl enent () event has occurred
before assuming you have all the content of an element. Also, processors may use i gnor abl eWi t espace() to return
whitespace within an element. This is always the case for a validating parser.

. endDocurent ()

Once the document is completely parsed, you'll want to print out the final tally as shown below. This is also a good place to tie up
any loose ends that may have come up during processing:

file:///D|/workspace/wsd-guide/wsd-guide.html (82 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

public static void main (String args[]) {

ErrorHandler events

Just as the Cont ent Handl er has predefined events for handling content, the Err or Handl er has predefined events for handling errors.
Because you specified Sur veyReader as the error handler as well as the content handler, you need to override the default
implementations of those methods. You need to be concerned with three events: war ni ng, error, and fatal Error:

i mport org.xnl.sax. SAXPar seExcepti on;
public class SurveyReader extends Defaul t Handl er {

public void error (SAXParseException e) {
Systemout.println("Error parsing the file: "+e.get Message());

}

public void warning (SAXParseException e) {
System out. println("Problemparsing the file: "+e.get Message());

}

public void fatal Error (SAXParseException e) {
Systemout.println("Error parsing the file: "+e.get Message());
System out . println("Cannot continue.");
Systemexit(1);

Resolving Entities. org. xnl . sax. Enti t yResol ver interface

An XML document is made up of entities. Each entity is identified by public identifiers and/or system identifiers. The system IDs tend to
be URLs. The public IDs generally require some sort of catalog system that can convert them into URLs. An XML parser reads each entity
using an | nput Sour ce connected to the right URL. Most of the time you just give the parser a system ID or an | nput Sour ce pointing to
the document entity, and let the parser figure out where to find any further entities referenced from the document entity. However,
sometimes you want the parser to read from different URLs than the ones the document specifies. For example, the parser might ask for
the XHTML DTD from the W3C web site. However, you might choose to replace that with a cached copy stored locally.

The Enti t yResol ver API lets you convert a public ID (URN) into a system ID (URL). Your application may need to do that, for example,
to convert something like href="ur n: / someNane" into "ht t p: / / soneURL".

The org. xm . sax. Enti t yResol ver interface allows you to filter the parser's requests for external parsed entities so you can replace the
files it requests with your own copies, either faithful or modified. You might even use this interface to provide some form of custom
proxy server support, though chances are that would be better implemented at the socket level rather than in the parsing API.

org. xm . sax. Enti tyResol ver is a callback interface much like Cont ent Handl er . It is attached to an or g. xnl . sax. XM_LReader interface
with set and get methods:

package org. xm . sax;

public interface XM.Reader {

public void setEntityResol ver (EntityResol ver resol ver);
public EntityResol ver getEntityResol ver();

The Enti t yResol ver interface contains just a single method, resol veEntity(...). If you register an Enti t yResol ver with an
XMLReader , then every time that XM_Reader needs to load an external parsed entity, it will pass the entity's public ID and system ID to
resol veEntity(...) first. The external entities can be: external DTD subset, external parameter entities, etc.

The Entit yResol ver allows you to substitute your own URI lookup scheme for external entities. Especially useful for entities that use
URL and URI schemes not supported by Java's protocol handlers; e.g. jdbc:/ orisbn:/.

The resol veEntity(...) can either return an | nput Sour ce or nul | . If it returns an | nput Sour ce, then this | nput Sour ce provides the
entity's replacement text. If it returns nul | , then the parser reads the entity in the same way it would have if there wasn't an
EntityResol ver - by using the system ID and the j ava. net . URL class.

file:///D|/workspace/wsd-guide/wsd-guide.html (83 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

You could replace the host in the system ID to load the DTDs from a mirror site. You could bundle the DTDs into your application's JAR
file and load them from there. You could even hardwire the DTDs in the Enti t yResol ver as string literals and load them with a
Stri ngReader .

package org. xnl . sax;

public interface EntityResol ver {
public | nputSource resolveEntity(String publicld,
String system d) throws SAXException, |OException;

The following resolver will redirect system identifier to local URI:

import java.io.FilelnputStream

i mport java.i o. Fil eNot FoundExcepti on;
i mport org.xm .sax. EntityResol ver;

i mport org.xmnl . sax. | nput Sour ce;

public class UseLocal inplenments EntityResol ver {
publ i c | nput Source resol veEntity(String publicld, String system d)
t hrows Fil eNot FoundException {

if (systemd.equal s("http://server.com DTD/ qui z. dtd")) {

/1l use |local version

return new | nput Sour ce(new Fil el nput Strean("| ocal / DTD/ qui z. dtd"));
} else {

/1 use the default behaviour

return null;

DOM

A DOM Docunent is a collection of nodes, or pieces of information, organized in a hierarchy. This hierarchy allows a developer to
navigate around the tree looking for specific information. Analyzing the structure normally requires the entire document to be loaded and
the hierarchy to be built before any work is done. Because it is based on a hierarchy of information, the DOM is said to be tree-based, or
object-based.

For exceptionally large documents, parsing and loading the entire document can be slow and resource-intensive. DOM provides an API
that allows a developer to add, edit, move, or remove nodes at any point on the tree in order to create an application, while event-based
models like SAX do not allow a developer to actually change the data in the original document.

The basic node types
1. Elements

Elements are the basic building blocks of XML. Typically, elements have children that are other elements, text nodes, or a
combination of both. Element nodes are also the only type of node that can have attributes.
2. Attributes

Attribute nodes contain information about an element node, but are not actually considered to be children of the element, as in:

<custonerid |imt="1000">12341</ cust oneri d>

3. Text

A text node is exactly that - text. It can consist of more information or just white space.
4. Document

The document node is the overall parent for all of the other nodes in the document.
Parsing a file into a document

To work with the information in an XML file, the file must be parsed to create a Docunent object.

file:///D|/workspace/wsd-guide/wsd-guide.html (84 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

The Docunent object is an interface, so it can't be instantiated directly; generally, the application uses a factory instead. In the example
Java environment, parsing the file is a three-step process:

1. Create the Docunent Bui | der Fact ory. This object creates the Docunent Bui | der .
2. Create the Docunent Bui | der . The Docunent Bui | der does the actual parsing to create the Docunent object.
3. Parse the file to create the Docunment object.

Start by creating the basic application, a class called Or der Processor :

i mport javax.xm . parsers. Docunent Bui | der;

i nport javax.xm . parsers. Docunent Bui | der Fact ory;
i mport java.io.File;

i mport org.w3c. dom Docunent ;

public class O derProcessor {
public static void main (String args[]) {

File docFile = new File("orders. xm");

Document doc = null;

try {
Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nst ance() ;
Docunent Bui | der db = dbf. newDocunent Bui | der () ;
doc = db. parse(docFile);

} catch (Exception e) {
System out . print("Problem parsing the file: "+e.get Message());

}

First, the Java code imports the necessary classes, and then it creates the Or der Pr ocessor application. Within the try-catch block, the
application creates the Docunent Bui | der Fact ory, which it then uses to create the Docunent Bui | der . Finally, the Docunent Bui | der
parses the file to create the Docunent .

One of the advantages of creating parsers with a Docunent Bui | der lies in the control over various settings on the parsers created by the
Docunent Bui | der Fact ory. For example, the parser can be set to validate the document:

try {
Docunent Bui | der Fact ory dbf = Document Bui | der Fact ory. newl nst ance() ;
dbf . set Val i dati ng(true);
Docunent Bui | der db = dbf. newDocunent Bui | der () ;
doc = db. parse(docFile);
} catch (Exception e) {

Get the root element

Once the document is parsed and a Docunent is created, an application can step through the structure to review, find, or display
information. This navigation is the basis for many operations that will be performed on a Docunent . Stepping through the document
begins with the root element. A well-formed document has only one root element, also known as the Docunent El enent . First the
application retrieves this element:

i mport javax.xm . parsers. Docunent Bui | der;

i mport javax. xnl . parsers. Docunent Bui | der Fact ory;
import java.io.File;

i mport org.w3c. dom Docunent ;

i nport org.w3c.dom El ement ;

public class OrderProcessor {

/| STEP 1: Get the root el enent
El ement root = doc. get Docunent El ement () ;
Systemout.println("The root elenent is " + root.get NodeNane());

Get the children of a node

Once the application determines the root element, it retrieves a list of the root element's children as a NodeLi st. The NodelLi st class is a

file:///D|/workspace/wsd-guide/wsd-guide.html (85 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

series of items through which the application can iterate. In this example, for brevity, the application gets the child nodes and verifies
the retrieval by showing only how many elements appear in the resulting NodelLi st :

i mport org.w3c. dom NodelLi st ;

/] STEP 1: Get the root el enent
El ement root = doc. get Docunent El ement () ;
Systemout. println("The root elenent is "+root.get NodeNane());

/| STEP 2: Get the children
NodeLi st children = root. get Chil dNodes();
System out. println("There are "+children. getLength()+" nodes in this
docunent . ") ;
}
}

Using get First Chil d() and get Next Si bl i ng()

The parent-child and sibling relationships offer an alternative means for iterating through all of the children of a node that may be more
appropriate in some situations, such as when these relationships and the order in which children appear is crucial to understanding the
data. In Step 3, a for-loop starts with the first child of the root. The application iterates through each of the siblings of the first child until
they have all been evaluated. Each time the application executes the loop, it retrieves a Node object, outputting its name and value.
Notice also that the elements carry a value of nul | , rather than the expected text. It is the text nodes that are children of the elements
that carry the actual content as their values:

i mport org.w3c. dom Node;

/| STEP 3: Step through the children
for (Node child = root.getFirstChild(); child != null; child =
chi |l d. get Next Si bling()) {
System out. println(child.get NodeNane() + " =" +
chi |l d. get NodeVal ue());
}

}

A Node object carries member constants that represent each type of node, such as ELEMENT_NODE or ATTRI BUTE_NODE. If the nodeType
matches ELEVENT_NCDE, it is an element. For every element it finds, the application creates a NanedNodeMap that contains all of the
attributes for the element. The application can iterate through a NamedNodeMap, printing each attribute's name and value, just as it
iterated through the NodelLi st :

i mport org.w3c. dom NamedNodeMap;

private static void stepThroughAll (Node start) {
System out. println(start. get NodeName()+" = "+start. get NodeVal ue());
if (start.get NodeType() == start. ELEMENT_NODE) {
NamedNodeMap startAttr = start.getAttributes();
for (int i =0; i < startAttr.getlLength(); i++) {
Node attr = startAttr.iten(i);
Systemout.println(" Attribute: "+ attr.getNodeName() +" =
"+attr.get NodeVal ue());

}

for (Node child = start.getFirstChild();child !'= null;child =
child. getNextSibling()) {
st epThr oughAl | (chi | d);
}

TrAX (Transformation API for XML)

TrAX is an API for transforming XML documents using XSLT style sheets. TrAX is a Java APl and has been defined to provide common

file:///D|/workspace/wsd-guide/wsd-guide.html (86 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

access to different XSLT Processors. TrAX is part of the JAXP API, which combines a number of Java APIs.

The TrAX API extends the original JAXP mission to include XML transformations: provide a vendor and implementation agnostic standard
Java API for specifying and executing XML transformations. This is important to note, because TrAX is more than just a standard
interface for XSLT engines - it is designed to be used as a general-purpose transformation interface for XML documents.

TrAX isn't a competitor to the existing DOM and SAX APIs used to represent and process XML, but a common Java API to bridge the
various XML transformation methods (a la JDBC, JNDI, etc.) including SAX Events and XSLT Templates. In fact, TrAX relies upon a SAX2-
and DOM-level-2-compliant XML parser/XSLT engine. JAXP 1.0 allows the developer to change XML parsers by setting a property, and
TrAX provides the same functionality for XSLT engines.

Here is a sample of how to apply an XSLT stylesheet to an XML document and write the results out to a file. In this example, both the
stylesheet and the XML document exist as files, but they could just as easily have come from any Java | nput St r eamor Reader class.
The same follows for the results of the transformation; | could've just as easily written the results out to any Java CQut put St r eamor
Witer class.

[/l 1. create the XML content input source:

I/ can be a DOM node, SAX stream or any Java input streanireader
String xm InputFile = "myXMinput.xm";

Sour ce xm Source = new StreanSource(new Fil el nput Stream(xm | nputFile));

/1 2. create the XSLT Styl esheet input source

I can be a DOM node, SAX stream or a java input streanireader
String xsltlnputFile = "myXsltStyl esheet. xsl";

Sour ce xsltSource = new StreanSource(new Fil el nput Stream(xsltlnputFile));

/] 3. create the result target of the transfornation

[/ can be a DOM node, SAX stream or a java out streanireader

String xm QutputFile = "result.htm";

Result transResult = new StreanResul t (new Fi | eQut put Strean(xm Qut putFile));

/] 4. create the transfornerfactory and transforner instance
TransformerFactory tf = TransformerFactory. newl nstance();
Transfornmer t = tf.newlransforner(xsltSource);

/1 5. execute transformation and fill result target object
t.transform(xm Source, transResult);

The first three stanzas simply establish our inputs and result targets, and aren't that interesting, with one exception. Notice that the
XSLT stylesheet isn't handled via a different class in TrAX. It's treated just like any other XML source document, because that's exactly
what it is. We use the stream implementations of the Sour ce and Resul t interfaces from the j avax. xnl . t r ansf or m st r eampackage to
handle reading the data from our file streams.

In the fourth stanza, we use the Tr ansf or mer Fact ory to get an instance of a Tr ansf or mer, and then use the Sour ce instance for the
XSLT stylesheet we created in the second stanza to define the transformation that this transformer will perform. A Tr ansf or mer actually
executes the transformation and assembles the result. A single Tr ansf or mer instance can be reused, but it is not thread-safe.

In this example, the XSLT stylesheet is reprocessed for each successive transformation. A very common case is that the same
transformation is applied multiple times to different Sour ces, perhaps in different threads. A more efficient approach in this case is to
process the transformation stylesheet once, and save this object for successive transformations. This is achieved through the use of the
TrAX Tenpl at es interface:

/] we've already set up our content Source instance,
/] XSLT Source instance, TransfornerFactory, and
// Result target fromthe previous exanpl e

/| process the XSLT styl esheet into a Tenpl ates instance
/1 w th our TransfornerFactory instance
Tenplates t = tf.newlenpl at es(xsl t Sour ce) ;

/1 whenever you need to execute this transformation, create
/1 a new Transforner instance fromthe Tenpl ates instace
Transfornmer trans = t.newlransforner();

/| execute transformation and fill result target object
trans. transform xm Source, transResult);

While the Tr ansf or mer performs the transformation, a Tenpl at es instance is the actual run-time representation of the processed
transformation instructions. Tenpl at es instances may be reused to increase performance, and they are thread-safe. It might seem odd
that an interface has a plural name, but it stems from the fact that an XSLT stylesheet consists of a collection of one or more

xsl : tenpl at e elements. Each t enpl at e element defines a transformation in that stylesheet, so it follows that the simplest name for a
representation of a collection of template elements is Tenpl at es.

file:///D|/workspace/wsd-guide/wsd-guide.html (87 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

One of the main reasons the TrAX APl is so clean and simple is the Interface-driven approach to design. The highest-level interfaces
define the essential entities that are being modeled, and the interactions are left to the implementations. The interfaces themselves
aren't very interesting. They are essentially marker interfaces.

Sour ce

The Sour ce interface is a generic container for existing XML documents that will be used in a transformation as either the input
document or the stylesheet. Serve as a single vendor-neutral object for multiple types of input. Implementations of the Sour ce interface
provide access to the XML document to be processed. TrAX defines Sour ce implementations for DOM trees (DOVSour ce); SAX 2.0
InputSources (SAXSour ce); and Java | nput St reans, Reader s and any of their derived classes (St r eanSour ce).

package j avax.xml .transform

public interface Source {
public void setSystem d(String systemd);
public String getSystem d();

Resul t

The Resul t interface is a generic container for an XML document that will be produced by a transformation. Serve as a single object for
multiple types of output, so there can be simple process method signatures. Implementations of the Resul t interface provide access to
the transformed XML document. TrAX defines Resul t implementations for DOM trees (DOVResul t); SAX 2.0 Cont ent Handl er s
(SAXResul t); and Java Qut put Streans, Witers and any of their derived classes (St reanResul t).

package j avax.xmnl .transform
public interface Result {

public static final String Pl _D SABLE OQUTPUT ESCAPI NG
public static final String Pl_ENABLE OUTPUT ESCAPI NG

public void setSystem d(String url);
public String getSystem d();

Tenpl ates

Tenpl at es is a thread-safe interface that represents a compiled stylesheet. It can quickly create new Tr ansf or ner objects without
having to reread and reparse the original stylesheet. It’s particularly useful when you want to use the same stylesheet in multiple
threads. The runtime representation of the transformation instructions. A template implementation is the optimized, in-memory
representation of an XML transformation that is processed and ready to be executed. Tenpl at es objects are safe to use in concurrent
threads. To reuse a single Tenpl at e instance in multiple concurrent threads, multiple Tr ansf or mer instances would have to be created
via the Tenpl at es. newTr ansf or er () factory method. Each Tr ansf or mer instance may be used completely independently in concurrent
threads, and both the Tenpl at es and the Tr ansf or ner instances can be reused for subsequent transformations.

package j avax. xnl .transform
public interface Tenpl ates ({

publ i c Transfornmer newlransformner() throws TransformerConfigurati onExcepti on;
public Properties getQutputProperties();

Tr ansf or ner

Transf or mer is the abstract class that represents a compiled stylesheet. It transforms Sour ce objects into Resul t objects. A single
Transf or mer can transform multiple input documents in sequence but not in parallel. Act as a per-thread execution context for
transformations, act as an interface for performing the transformation. A Tr ansf or ner is the object that actually applies the
transformation to the source document and creates the result document. However, it is not responsible for outputting, or serializing, the
result of the transformation. This is the responsibility of the transformation engine's serializer and this behavior can be modified via the
set Qut put Property(java.lang. String nane, java.lang. String val ue) method. The configurable Qut put Properti es are defined in
the Qut put Keys class, and are described in the XSLT 1.0 Specification. Transformers are immutable, they cannot change which

Tenpl at es instance gets applied to the Sour ce.

| package j avax. xnl.transform

file:///D|/workspace/wsd-guide/wsd-guide.html (88 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

public abstract class Transforner {

protected Transforner();
public void transform(Source input, Result output) throws Transforner Exception;

public void setParaneter(String nane, Object val ue);
public Qbject getParanmeter(String nane);
public void clearParaneters();
public void set URI Resol ver (URI Resol ver resol ver);
publ i c URI Resol ver get URl Resol ver();
public void set QutputProperties(Properties serialization) throws
I'I'I egal Argunment Excepti on;
public Properties getQutputProperties();
public void setQutputProperty(String name, String val ue) throws
I'l'l egal Ar gument Except i on;
public String getQutputProperty(String nanme) throws |l egal Argunment Excepti on;
public void setErrorListener(ErrorListener |listener) throws |I|egal Argument Excepti on;
public ErrorlListener getErrorlListener();

Transf or mer Fact ory

Transf or mer Fact ory is an abstract factory that creates new Tr ansf or mer and Tenpl at es objects. The concrete subclass that

new nst ance() instantiates is specified by the j avax. xm . t ransf orm Tr ansf or mer Fact ory Java system property. If this class is not
set, a platform dependent default class is chosen. Serve as a vendor-neutral Processor interface for XSLT and similar processors. The
Transf or mer Fact ory is primarily responsible for creating new Tr ansf or mer s and Tenpl at es objects. New instances of Tr ansf or mer are
created via the st ati ¢ newTr ansf or ner () method. Processing Sour ce instances into Tenpl at es objects is handled by the

newTenpl at es(Sour ce source) method.

package j avax. xnl .transform
public abstract class TransfornerFactory {

protected TransfornerFactory();
public static TransformerFactory newl nstance() throws
Transf or mer Fact or yConf i gur ati onError;

public Transfornmer newTlransformer(Source source) throws
Transf or mer Conf i gur ati onExcepti on;
publ i c Transfornmer newlransforner() throws TransfornmerConfigurati onExcepti on;
public Tenpl at es newTenpl at es(Source source) throws TransformerConfigurati onExcepti on;

publi ¢ Source get Associ at edStyl esheet (Source source, String nedia, String title, String
charset)
t hrows Transf orner Confi gurati onExcepti on;
public void set URI Resol ver (URI Resol ver resol ver);

publ i c URI Resol ver get URl Resol ver();

publ i c bool ean get Feature(String nane);

public void setAttribute(String name, Object value) throws II1egal Argunent Excepti on;
public Qoject getAttribute(String nane) throws Il egal Argunent Excepti on;

public void setErrorListener(ErrorListener |listener) throws |I|egal Argument Excepti on;
public ErrorListener getErrorListener();

Given a scenario, select the proper mechanism for parsing and processing the information in an XML document.
SAX:

. SAX is an event-driven XML parser that is appropriate for high-speed processing of XML because it does not produce a
representation of the data in memory.

. SAX automatically perform structure validation.

. Event-based parsers (SAX) provide a data-centric view of XML. When an element is encountered, the idea is to process it and then
forget about it. The event-based parser returns the element, its list of attributes, and the content. This is more efficient for many
types of applications, especially searches. It requires less code and less memory since there is no need to build a large tree in
memory as you are scanning for a particular element, attribute, and/or content sequence in an XML document.

DOM:

. DOM produces an in-memory data representation, which allows an application to manipulate the contents in memory

file:///D|/workspace/wsd-guide/wsd-guide.html (89 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

. DOM automatically perform structure validation.

. Tree-based parsers (DOM) provide a document-centric view of XML. In tree-based parsing, an in-memory tree is created for the
entire document, which is extremely memory-intensive for large documents. All elements and attributes are available at once, but
not until the entire document has been parsed. This technique is useful if you need to navigate around the document and perhaps
change various document chunks, which is precisely why it is useful for the Document Object Model (DOM), the aim of which is to
manipulate documents via scripting languages or Java.

JAXB:

JAXB application can perform structure and content validation with Java classes that it generates from a schema. A JAXB
application builds an in-memory data structure, like a DOM, by marshalling an XML document to build a content tree, which
contains objects that are instances of the derived classes. However, unlike a DOM tree, a content tree is specific to one source
schema, does not contain extra tree-manipulation functionality, allows access to its data with the derived classes' accessor
methods, and is not built dynamically. For these reasons, a JAXB application uses memory more efficiently than a DOM application
does. If the content of a document is more dynamic and not well-constrained, DOM and SAX are more appropriate than JAXB for
processing XML content that does not have a well-known schema prior to processing the content.
Build object trees representing XML data that is valid against the XML Schema by either unmarshalling the data from a document
or instantiating the classes you created.

. Access and modify the data. Optionally validate the modifications to the data relative to the constraints expressed in the XML
Schema.

. Marshal the data to new XML documents.

Describe the functions and capabilities of JAXB, including the JAXB process flow, such as XML-to-Java and Java-to-
XML, and the binding and validation mechanisms provided by JAXB.

JAXB defines an architecture for binding XML schemata to Java objects. These bindings allow you to unmarshal XML documents into a
hierarchy of Java objects and marshal the Java objects into XML with minimal effort. If you work a lot with XML, you know how tedious it
can be to write Simple API for XML (SAX) or Document Object Model (DOM) code to convert XML into Java objects that mean something
to your program. JAXB generates code automatically so you can go about the business of processing data instead of parsing it.

<?xml version="1.0" encoding="UTF-8"? = [
«<xs:schema
xmins:xs="http: v, w3.0rg/2001XMLSchema ">
«<ys:element name ="item™>
<usicomplexType >
<HsiseqUEncE >
«<xs:element name="name" type="xs:string"/>
<xs:element name ="priority" type="xs:int"/>
<xs:element name ="task” type="us:string"/ > y
<f¥sisequence =
<fxsicomplexType>
< fusielement =
< fusischema)

public interface ItemType { [
java.lang.5tring getTask(;

void setTask{java.lang.String value);
int getPriorityJ;

void setPriority{int value);
java.lang.5tring getMame(;

void setMame{java.lang.String value);

public interface ITtem
extends javax.xml.hind.Element, TtemType {

compile

Schema / Classes

C:\jwsdp-1.3Yaxbbin'yjc.bat item.xsd Il]

follows instanceof

Unmarshaller u = ctx.createUnmarshaller (J;
Ttem item = (Ttem) u.unmarshal{new File(item.xml7};

unmarshal

Document marshal Objects

/

Marshaller m = ctx.createMarshaller (J;
m.marshal{item, new FileOutputStream{newltem.xml 7}

Item myItem1;

<2xml version="1.0" encoding="UTF-8"?> Ttem myltem?;

<item
xmins:wsi="http: {faww . w3, org 2001 XMLS chema-instance™
wsi:naMamespaceSchemalocation="item. xsd "=
<name =\Write SCOIWS Guide </name =
«<priority =10 < fpriority >
<task>JAXE Chapter update < ftask>

P

file://ID|/workspace/wsd-guide/wsd-guide.html (90 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

«<priority =10 < fpriority > '
<task=JAXE Chapter update < ftask>

< fitem

Latest version of JAXB supports XML schema definitions and allows additional binding declarations to be defined inside of the schema
using XML schema annotations.

The JAXB API, defined in the j avax. xm . bi nd package, is a set of interfaces through which client applications communicate with code
generated from a schema. The center of the JAXB API is JAXBCont ext , the client’ s entry point. It provides an abstraction for managing
the XML-Java binding information necessary to implement the JAXB binding framework operations: unmarshal, marshal and validate.

These three aspects of JAXB are covered by three separate interfaces. Instances of those interfaces can be created from a JAXBCont ext

object:

javax. xm . bi nd. Unmar shal | er - governs the process of deserializing XML data into Java content trees, optionally validating the
XML data as it is unmarshalled.

i mport j avax.
i nport] avax.
i mport javax.
i mport javax.
i nport] avax.

publ i
publ i
publ i
publ i
publ i
publ i

publ i
publ i
publ i
publ i
publ i
publ i
publ i

package j avax.xm . bi nd;

i mport java.io.File;
import java.io.lnputStream
i mport java. net. URL;

xm . bi nd. JAXBExcept i on;

xm . bi nd. PropertyException;

xm . bi nd. Unmar shal | er Handl er ;
xm . bi nd. Val i dati onEvent Handl er;
xm . transf orm Sour ce;

Cc
C
Cc
Cc
C
Cc

C
Cc
Cc
Cc
Cc
Cc
C

i mport org.w3c. dom Node;
i mport org.xnl.sax. | nput Source;

public interface Unmarshaller {

Ooj ect unmarshal (File f) throws JAXBExcepti on;

Obj ect unmarshal (I nput Streamis) throws JAXBExcepti on;

Obj ect unmarshal (URL url) throws JAXBExcepti on;

Obj ect unmar shal (| nput Sour ce source) throws JAXBExcepti on;
Obj ect unmar shal (Node node) throws JAXBExcepti on;

Obj ect unmar shal (Source source) throws JAXBExcepti on;

Unmar shal | er Handl er get Unmar shal | er Handl er () ;

voi d set Val i dati ng(bool ean validating) throws JAXBExcepti on;

bool ean isValidating() throws JAXBExcepti on;

voi d set Event Handl er (Val i dati onEvent Handl er handl er) throws JAXBExcepti on;
Val i dat i onEvent Handl er get Event Handl er () t hrows JAXBExcepti on;

voi d setProperty(String nane, Object value) throws PropertyException;

Obj ect getProperty(String nanme) throws PropertyException;

. javax.xnl . bind.

Mar shal | er - governs the process of serializing Java content trees back into XML data.

publ i
publ i
publ i
publ i

i mport javax.
i mport javax.
i mport javax.
i mport javax.

package j avax. xnl . bi nd;

import java.io.QutputStream
import java.io. Witer;

xm . bi nd. JAXBExcept i on;

xm . bi nd. PropertyExcepti on;

xm . bi nd. Val i dati onEvent Handl er;
xm . transform Resul t;

Cc
C
Cc
Cc

i mport org.w3c. dom Node;
i mport org.xnl.sax. Cont ent Handl er;

public interface Marshaller {

static final String JAXB_ENCODI NG = "j axb. encodi ng";
static final String JAXB_FORMATTED OQUTPUT = "j axb. formatted. out put"”;
static final String JAXB_SCHEMA LOCATI ON = "j axb. schemalLocati on";

static final String JAXB_NO NAVESPACE SCHEMA LOCATI ON =

file:///D|/workspace/wsd-guide/wsd-guide.html (91 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

"j axb. noNanmespaceSchenmaLocat i on";

public void marshal (Obj ect obj, Result result) throws JAXBExcepti on;

public voi d narshal (Qbj ect obj, QutputStream os) throws JAXBExcepti on;

public void narshal (Obj ect obj, Witer witer) throws JAXBExcepti on;

public void marshal (Obj ect obj, ContentHandl er handler) throws JAXBExcepti on;
public void narshal (Obj ect obj, Node node) throws JAXBExcepti on;

public org. w3c. dom Node get Node(Obj ect contentTree) throws JAXBExcepti on;
public void setProperty(String nane, Object value) throws PropertyException;

publ i c voi d set Event Handl er (Val i dati onEvent Handl er handl er) throws JAXBExcepti on;

c
c

public Qbject getProperty(String nane) throws PropertyException;
c

public ValidationEvent Handl er get Event Handl er () throws JAXBExcepti on;

. javax.xm . bi nd. Val i dat or - performs the validation on an in-memory object graph.

package j avax. xm . bi nd;

i mport javax.xm . bi nd. JAXBExcepti on;
i mport javax.xnl . bi nd. PropertyExcepti on;
i mport javax.xml .bind. ValidationEvent Handl er;

public interface Validator {

public void set Event Handl er (Val i dati onEvent Handl er handl er) throws JAXBExcepti on;
publi c Validati onEvent Handl er get Event Handl er () throws JAXBExcepti on;

publ i ¢ bool ean val i dat e(Obj ect subroot Gbj) throws JAXBExcepti on;

publ i c bool ean val i dat eRoot (Cbj ect root Obj) throws JAXBExcepti on;

public void setProperty(String nane, Object value) throws PropertyException;
public Object getProperty(String nane) throws PropertyException;

JAXBCont ext is an abstract class defined in the API, so its actual implementation is vendor-dependent. To create a new instance of
JAXBCont ext , you use the st ati c newl nst ance(cont ext Pat h) method.

JAXBCont ext cont ext = JAXBCont ext.new nstance("org. acne. f 0o: org. acne. bar") ;

The cont ext Pat h contains a list of Java package names that contain schema derived interfaces. The value of this parameter initializes
the JAXBCont ext object so that it is capable of managing the schema derived interfaces. The client application must supply a context
path which is a list of colon (‘:") separated java package names that contain schema derived classes. In this way, the unmarshaller will
look at a document and figure out which package to use. This makes it easy to read in different types of documents without knowing
their type in advance.

Unmarshalling (XML-to-Java)

An unmarshaller is used to read XML and build an object tree from classes generated by the compiler. To read an XML file, you would
simply do:

JAXBCont ext j axbCont ext = JAXBCont ext.newl nst ance(packageNane) ;
Unmar shal | er unnmarshal | er = jaxbContext.createUnnmarshal |l er();
unmar shal | er. set Val i dati ng(true);

Itemitem= (ltem) unnarshaller.unmarshal (new File("itemxm"));

There are other overloaded versions that take different types of input, such as | nput St reamor | nput Sour ce. You can even unmarshal a
javax. xm . transform Sour ce object. All in all, it's similar to the way DOM trees are parsed.

Here are some more examples of unmarshalling:

Unmarshalling from a Fi | e:

JAXBCont ext jc JAXBCont ext . newl nst ance("com acne. fo0");
Unmar shal l er u = jc.createUnmarshal l er();
oject o = u.unmarshal (new File("xmFile.xm"));

file:///D|/workspace/wsd-guide/wsd-guide.html (92 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Unmarshalling from a j ava. i o. | nput St r eant

InputStreamis = new Fil el nputStrean("xm File.xm");
JAXBCont ext jc = JAXBCont ext . newl nstance("com acne.fo0");
Unmar shal l er u = jc.createUnnarshaller();

Obj ect 0o = u.unmarshal (is);

Unmarshalling from a j ava. net. URL:

JAXBCont ext jc JAXBCont ext . newl nst ance("com acne. fo0");
Unmar shal l er u = jc.createUnmarshall er();

URL url = new URL("http://server.comxm File.xm");
Object o = u.unmarshal (url);

Unmarshalling from a St ri ngBuf f er using a j avax. xm . transform stream St reanSource:

JAXBCont ext jc JAXBCont ext . newl nst ance("com acne. fo0");

Unmar shal l er u = jc.createUnnarshaller();

StringBuffer xm Str = new StringBuffer("<?xm version="1.0'?> ...");

oj ect o = u.unmarshal (new StreanSource(new StringReader(xm Str.toString())));

Unmarshalling from a or g. w3c. dom Node:

JAXBCont ext j ¢ = JAXBCont ext.new nstance("com acne.foo");
Unmar shal l er u = jc.createUnmarshall er();

Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newi nst ance() ;
dbf . set NanespaceAwar e(true);

Docunent Bui | der db = dbf. newDocunent Bui | der () ;

Docunment doc = db. parse(new File("xm File.xm"));

oj ect o = u.unmarshal (doc);

By default, Unmar shal | er is very forgiving. Even if a document is invalid, it tries to recover from errors. If the document is so broken
that it cannot be read, an j avax. xni . bi nd. Unmar shal Except i on (child of j avax. xmi . bi nd. JAXBExcept i on) will be thrown. It's often
desirable to get more information about errors or reject documents with errors. The first step to do this is to set

Val i dati onEvent Handl er to the Unmar shal | er. A Val i dat i onEvent Handl er can explicitly tell a JAXB implementation whether it should
reject a document or try to recover from errors. It also gives you more information, such as line numbers, about errors.

An Unnmar shal | er can validate a document with the schema while unmarshalling. With this option turned on, it rejects anything short of
a valid document. However, W3C XML Schema validation can be very costly. Another possibility is to set up a SAX pipeline in such a way
that your XML parser does the validation; alternately, you could install a stand-alone validator in the pipeline. In this way, for example,
you can change your schema to change what you get from the compiler, while maintaining the scrutiny of the original schema.

Marshalling (Java-to-XML)

A Marshal | er is used to write an object graph into XML. To write an object o to a file, you would do:

JAXBCont ext j axbCont ext = JAXBCont ext.newl nst ance(packageNane) ;
Mar shal | er marshal |l er = jaxbCont ext.createMarshaller();

oj ect Factory itemvaker = new Obj ect Factory();

Itemitem= itenVaker.createltem();

mar shal | er. marshal (item new Fi | eCut put Strean("new em xm ")) ;

There are other overloaded versions which allow you to produce XML as a a DOM tree or as SAX events. For example, by using
StringWiter, you can marshal an object into a string. You can also marshal an object graph to a j avax. xnml . transf orm Resul t
object.

file:///D|/workspace/wsd-guide/wsd-guide.html (93 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Here are some more examples of marshalling:

Marshalling to a file (Fi | eQut put Strean):

Qut put Stream os = new Fil eQutputStreanm("xm File.xm");
m mar shal (obj, os);

Marshalling to a SAX Cont ent Handl er :

/1 assume MyCont ent Handl er i nstanceof ContentHandl er
m mar shal (obj, new MyCont ent Handl er ());

Marshalling to a DOM Node:

Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nst ance() ;
dbf . set NanespaceAwar e(true);

Docunent Bui | der db = dbf. newDocunent Bui | der () ;

Docunment doc = db. newDocunent () ;

m mar shal (obj, doc);

Marshalling to a j ava. i 0. Qut put St r eant

m mar shal (obj, System out);

Marshalling to aj ava.io. Witer:

m mar shal (obj, new PrintWiter(Systemout));

Marshalling to a j avax. xm . t ransf orm SAXResul t :

/1 assume MyCont ent Handl er i nstanceof ContentHandl er
SAXResul t result = new SAXResul t (new MyContent Handl er ());

m mar shal (obj, result);

Marshalling to a j avax. xm . transf orm DOVResul t :

DOVResul t result = new DOVResul t () ;

m mar shal (obj, result);

Although each of the marshal methods accepts a j ava. | ang. Obj ect as its first parameter, JAXB Providers are not required to be able to
marshal any arbitrary j ava. | ang. Cbj ect . If the JAXBCont ext object that was used to create this Mar shal | er does not have enough
information to know how to marshal the object parameter (or any objects reachable from it), then the nar shal operation will throw a
Mar shal Excepti on.

By default, the Mar shal | er will use UTF-8 encoding when generating XML data to a j ava.i o. Qut put Stream or ajava.io. Witer. Use
the set Property API to change the ouput encoding used during these nar shal operations.

You can control the behavior of marshalling by setting Mar shal | er properties. For example, you can toggle indentation of the XML:

Marshal | er marshal | er = j axbCont ext. createMarshaller();
mar shal | er. set Property(Mrshal | er. JAXB_FORVATTED _OUTPUT, new Bool ean(true));

JAXB can produce XML as SAX events. That is, you can pass Cont ent Handl er and have it receive SAX events from a JAXB object. This

file:///D|/workspace/wsd-guide/wsd-guide.html (94 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

gives client apps plenty of chances to modify XML. For example, you can add and remove elements or attributes, use one of the freely
available serializers for better output, or write your own XML serializer that prints XML in your preferred way.

Finally, you can ask a Mar shal | er to marshal an invalid object graph by setting a Val i dat i onEvent Handl er . If a provider supports error
recovery, you can tell it to write XML even if it's incomplete.

If the bool ean Val i dati onEvent Handl er. handl eEvent (Val i dati onEvent event) method throws an unchecked runtime exception, the
JAXB Provider must treat that as if the method returned f al se, effectively terminating whatever operation was in progress at the time
(unmarshal, validate, or marshal). The method returns: tr ue if the JAXB Provider should attempt to continue the current unmarshal,
validate, or marshal operation after handling this warning/error, f al se if the provider should terminate the current operation with the
appropriate Unnar shal Excepti on, Val i dati onExcepti on, or Mar shal Excepti on.

Validation
There are three forms of Validation in JAXB:
1. Unmarshal-Time Validation

This form of validation enables a client application to receive information about validation errors and warnings detected while
unmarshalling XML data into a Java content tree and is completely orthogonal to the other types of validation. To enable or
disable it use method Unmar hal | er . set Val i dati ng(...) . All JAXB Providers are REQUIRED to support this operation.

2. On-Demand Validation

This form of validation enables a client application to receive information about validation errors and warnings detected in the
Java content tree. At any point, client applications can call the Val i dat or. val i date(...) method on the Java content tree (or
any sub-tree of it). All JAXB Providers are REQUIRED to support this operation.

3. Fail-Fast Validation

This form of validation enables a client application to receive immediate feedback about modifications to the Java content tree
that violate type constraints on Java Properties as defined in the specification. JAXB Providers are NOT REQUIRED support this
type of validation. Of the JAXB Providers that do support this type of validation, some may require you to decide at schema
compile time whether or not a client application will be allowed to request fail-fast validation at runtime.

The Val i dat or class is responsible for managing On-Demand Validation. The Unnar shal | er class is responsible for managing Unmarshal-
Time Validation during the unmarshal operations. Although there is no formal method of enabling validation during the marshal
operations, the Mar shal | er may detect errors, which will be reported to the Val i dati onEvent Handl er registered on it.

JAXB has the capability to validate an object graph in memory without actually writing it to XML. This allows client apps to check if a
graph is okay and ready to process; if not, validation will identify objects that contain errors so that, for example, client apps can ask
users to fix those.

The following code validates the object "i t en':

JAXBCont ext j axbCont ext = JAXBCont ext.new nst ance(packageNane) ;
Obj ect Factory itemvaker = new Obj ect Factory();
Itemitem = itenVaker.createltem();
Val i dator validator = jaxbContext.createValidator();
if(! validator.validate(item) {
Systemerr.println("Not valid !I!l");
}

To receive detailed information about errors, you need to register Val i dat i onEvent Handl er with the Val i dat or, just like you did in
Unmar shal | er and Marshal | er. This is analogous to registering an Er r or Handl er for a SAX parser.

You can also first marshal an object graph and then validate XML (for example by Java API for validators). But doing so makes it much
harder to associate errors with their sources, which makes debugging harder for humans. Validation after marshalling will give you
errors like "missing <f 00> element,"” but you can hardly know what is actually wrong in the object graph.

Validity is not enforced while you are modifying an object graph; you ALWAYS have to explicitly validate it. To edit a valid object graph
into another valid object graph, you may need to go through invalid intermediate states. If validity is enforced on every step of
mutation, this becomes impossible.

Customization Through the Schema

The binding language is an XML based language which defines constructs referred to as binding declarations. A binding declaration can
be used to customize the default binding between an XML schema component and its Java representation.

The schema for binding declarations is defined in the namespace http://j ava. sun. com xm / ns/j axb. This specification uses the
namespace prefix "j axb" to refer to the namespace of binding declarations. For example:

file://ID|/workspace/wsd-guide/wsd-guide.html (95 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

A binding compiler interprets the binding declaration relative to the source schema and a set of default bindings for that schema.
Therefore a source schema need not contain a binding declarations for every schema component. This makes the job of a JAXB
application developer easier.

There are two ways to associate a binding declaration with a schema element:

. as part of the source schema (inline annotated schema).
. external to the source schema in an external binding declaration.

The syntax and semantics of the binding declaration is the same regardless of which of the above two methods is used for
customization.

Inline Annotated Schema

This method of customization utilizes on the appi nf o element specified by the XML Schema. A binding declaration is embedded within
the appi nf o element as illustrated below:

The inline annotation where the binding declaration is used identifies the schema component.

Here are the changes you must make to the schema to make JAXB generate j ava. util . Vector rather than java. util.ArraylLi st, its
default collection (the col | eci onType value must be either "indexed" or any fully qualified class name that implements
java.util.List). Note that the top-level schema tag needs to be changed too:

The annot ati on tag introduces a part of the schema that is usually intended for schema processing software. The appi nf o tag
introduces instructions for a particular processing application (in this case, JAXB's xj ¢ code-generation tool). Usually, each application
uses its own namespace, as JAXB has done here.

Before customization:

file:///D|/workspace/wsd-guide/wsd-guide.html (96 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

After customization:

External Binding Declaration

The external binding declaration format enables customized binding without requiring modification of the source schema. Unlike inline
annotation, the remote schema component to which the binding declaration applies must be identified explicitly. The j axb: bi ndi ngs
element enables the specification of a remote schema context to associate its binding declaration(s) with. Minimally, an external binding
declaration follows the following format:

The attributes schenmaLocat i on and node are used to construct a reference to a node in a remote schema. The binding declaration is
applied to this node by the binding compiler as if the binding declaration was embedded in the node’s xs: appi nf o element. The attribute
values are interpreted as follows:

. schenmaLocation - It is a URI reference to a remote schema.
. node - It is an XPath 1.0 expression that identifies the schema node within schenmaLocat i on to associate binding declarations
with.

Use the SAAJ APIs to create and manipulate a SOAP message.

file:///D|/workspace/wsd-guide/wsd-guide.html (97 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

SAAJ - SOAP with Attachments API for Java - contains APIs for creating and populating SOAP messages which might or might not
contain attachments. It also contains APIs for sending point to point, non-provider-based, request and response SOAP messages.

SOAP message is made of SOAP Envelope and zero or more attachments. The SOAP Envelope is then made of SOAP Header and SOAP
Body. SOAP attachment allows the SOAP message to contain not only the XML data but also non-XML data such as JPG file. And it uses
the MIME multipart as container for these non-XML data.

The SAAJ API provides the SOAPMessage class to represent a SOAP message, the SOAPPart class to represent the SOAP part, the
SCOAPEnvel ope interface to represent the SOAP envelope, and so on.

When you create a new SOAPMessage object, it will automatically have the parts that are required to be in a SOAP message. In other
words, a new SOAPMessage object has a SOAPPart object that contains a SOAPEnvel ope object. The SOAPEnvel ope object in turn
automatically contains an empty SOAPHeader object followed by an empty SOAPBody object. If you do not need the SOAPHeader object,
which is optional, you can delete it. The rationale for having it automatically included is that more often than not you will need it, so it is
more convenient to have it provided. The SOAPHeader object may contain one or more headers with information about the sending and
receiving parties. The SOAPBody object, which always follows the SOAPHeader object if there is one, provides a simple way to send
information intended for the ultimate recipient. For example, if there is a SOAPFaul t object, it must be in the SOAPBody object.

A SOAP message may include one or more attachment parts in addition to the SOAP part. The SOAP part may contain only XML content;
as a result, if any of the content of a message is not in XML format, it must occur in an attachment part. So, if for example, you want
your message to contain a binary file, your message must have an attachment part for it. Note that an attachment part can contain any
kind of content, so it can contain data in XML format as well.

The SAAJ API provides the Att achnment Part class to represent the attachment part of a SOAP message. A SOAPMessage object
automatically has a SOAPPart object and its required subelements, but because Att achnent Part objects are optional, you have to
create and add them yourself.

SAAJ API belongs to j avax. xm . soap. * package. SOAPConnect i on provides request/response SOAP message exchange. SOAPMessage
creates and populates SOAP message (consists of SOAPPart and Attachnent Part).

«interface»
javax.xml.soap.Node

/ winterface»

«interfaces javax.xml.soap.SOAPElement
javax.xml.soap.Text

/ R

«interface» «interface=
javax.xml.soap.SOAPBody javax.xml.soap.SOAPHeader
«interface»
«interface»

javax.xml.soap.SOAPBodyElement

<7

javax.xml.soap.SO0APHeaderElement

«interface» «interface»
javax.xml.soap.SOAPFault javax.xml.soap.SOAPEnvelope

javax. xnml . soap. MessageFact ory is a factory for creating SOAP 1.1-based messages.

file://ID|/workspace/wsd-guide/wsd-guide.html (98 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

j avax. xm . soap. SOAPMessage is a Java technology abstraction for a SOAP 1.1 message. Contains EXACTLY ONE SOAPPart and ZERO
OR MORE At 't achnent Part s.

j avax. xm . soap. SOAPPar t is the first part of a multi-part message when there are attachments.

javax. xml . soap. Att achment Part can contain any data (for example: JPEG images, XML business documents, etc.) If a SOAPMessage
object has one or more attachments, each Att achnent Part object must have a MIME header to indicate the type of data it contains. It
may also have additional MIME headers to identify it or to give its location, which are optional but can be useful when there are multiple
attachments. When a SOAPMessage object has one or more Att achnent Part objects, its SOAPPart object may or may not contain
message content.

Steps of SAAJ Programming
1. Creating a message (SOAPMessage)
Use MessageFact ory as a factory of messages. SOAPMessage object has the following:
. SOAPPart object
o SOAPEnvel ope object

. empty SOAPHeader object
. empty SOAPBody object

Example:

Result:

2. Accessing elements of a message

Approach 1: from SOAPEnvel ope object:

file:///D|/workspace/wsd-guide/wsd-guide.html (99 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

SCAPBody body = envel ope. get Body() ;

Approach 2: from SOAPMessage object:

SOAPHeader header = nessage. get SOAPHeader () ;
SOAPBody body = nessage. get SOAPBody() ;

3. Adding contents to the body

Example:

SQAPBody body = nessage. get SOAPBody/() ;

SOAPFact ory soapFactory = SOAPFact ory. new nst ance();

Name bodyName = soapFactory. creat eName(" Get Last TradePri ce",
"m', "http://wonbat. ztrade. cont');

SOAPBodyE!l enent bodyEl enent = body. addBodyEl enent (bodyNan®) ;

Will produce following XML:

<m Cet Last TradePri ce xnm ns: n¥"http://wonbat . zt rade. coni >

</ m Get Last Tr adePri ce>

Example:

Name nane = soapFactory. creat eNanme("synbol ") ;
SQAPEI enent synbol = bodyEl enent . addChi | dEl enent (nane) ;
synbol . addText Node(" SUNW) ;

Generates XML fragment like following:

<synbol >SUNW/ synbol >

4. Getting a SOAPConnect i on object

SQAPConnect i onFact ory soapConnecti onFactory = SQAPConnecti onFact ory. newl nst ance();
SOAPConnect i on connecti on = soapConnecti onFactory. creat eConnection();

All SOAP messages are sent and received over a connection. With the SAAJ API, the connection is represented by a
SOAPConnect i on object, which goes from the sender directly to its destination. This kind of connection is called a point-to-point
connection because it goes from one endpoint to another endpoint. Messages sent using the SAAJ API are called request-response
messages. They are sent over a SOAPConnect i on object with the method call, which sends a message (a request) and then blocks
until it receives the reply (a response).

5. Sending a message

/] Create an endpint point which is either URL or String type
java.net.URL endpoint = new URL("http://wonbat. ztrade. conf quot es") ;

/1l Send a SOAPMessage (request) and then wait for SOAPMessage (response)
SOAPMessage response = connection. cal | (message, endpoint);

A SAAJ client calls the SOAPConnect i on method cal | on a SOAPConnecti on object to send a message. The call method takes two
arguments, the message being sent and the destination to which the message should go. This message is going to the stock
quote service indicated by the URL object endpoint.

6. Getting the content of a message

file:///D|/workspace/wsd-guide/wsd-guide.html (100 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

SOAPBody soapBody = response. get SOAPBody() ;

java.util.lterator iterator = soapBody. get Chil dEl enment s(bodyNane) ;
SOAPBodyEl enment bodyEl ement = (SOAPBodyEl enment)i terator. next();
String | astPrice = bodyEl ement. get Val ue() ;

System out.print("The last price for SUNWis ");
System out. println(lastPrice);

In order to access bodyEl enent , you need to call the method get Chi | dEl ement s on soapBody. Passing bodyNane to

get Chi | dEl enent s returns aj ava. util.|terator object that contains all of the child elements identified by the Nane object
bodyNane. You already know that there is only one, so just calling the method next on it will return the SOAPBodyEl ement you
want. Note that the method | t er at or. next () returns a Java Obj ect, so it is necessary to cast the Obj ect it returns to a
SOAPBodyEl enent object before assigning it to the variable bodyEl enent .

Adding content to SOAPHeader

To add content to the header, you need to create a SOAPHeader El enent object. As with all new elements, it must have an associated
Nanme object, which you can create using the message's SOAPEnvel ope object or a SOAPFact ory object. For example, suppose you want
to add a conformance claim header to the message to state that your message conforms to the WS-I Basic Profile. The following code
fragment retrieves the SOAPHeader object from message and adds a new SOAPHeader El enent object to it. This SOAPHeader El enent
object contains the correct qualified name and attribute for a WS-1 conformance claim header:

SCAPHeader header = nessage. get SOAPHeader () ;

Nanme header Nane = soapFactory.createNane("Cain, "wsi", "http://ws-

i . org/ schemas/ conf or manceCl ai m' ") ;

SCAPHeader El enent header El enent = header . addHeader El ement (header Nang) ;
header El ement . addAt t ri but e(soapFact ory. creat eName("confornsTo"), "http://ws-
i.org/profiles/basicl.0/");

At this point, header contains the SOAPHeader El enent object header El enent identified by the Nanme object header Nane. Note that the
addHeader El enent method both creates header El enent and adds it to header.

XML fragment generated:

<SQAP- ENV: Header >
<wsi : Cl ai m confornsTo="http://ws-i.org/profiles/basicl.0/"
xm ns: wsi ="http://ws-i.org/schemas/ conf ormanced ai m "/ >
</ SOAP- ENV: Header >

A conformance claim header has no content.

For a different kind of header, you might want to add content to header El enent . The following line of code uses the method
addText Node to do this:

header El enent . addText Node(" or der") ;

Now you have the SOAPHeader object header that contains a SOAPHeader El enent object whose content is "or der ™.
Adding content to SOAPBody

The process for adding content to the SOAPBody object is the same as the process for adding content to the SOAPHeader object. You
access the SOAPBody object, add a SOAPBodyEl enent object to it, and add text to the SOAPBodyEl enent object. It is possible to add

additional SOAPBodyEl enent objects, and it is possible to add subelements to the SOAPBodyEl enent objects with the method

addChi | dEl emrent . For each element or child element, you add content with the method addText Node. The following example shows
adding multiple SOAPEI enent objects and adding text to each of them:

SOAPBody body = soapFact ory. get SOAPBody() ;

Name bodyNanme = soapFactory. creat eNane(" Pur chaseLi nel tens", "PO',
"http://sonata.fruitsgal ore.cont);
SQAPBodyEl enent purchaseli neltens = body. addBodyEl enent (bodyNane) ;

Narmre chi | dName = soapFactory. creat eNane(" Order");
SOAPE! enent order = purchaseLi neltens. addChi | dEl enent (chi | dNane) ;

file:///D|/workspace/wsd-guide/wsd-guide.html (101 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

chi | dName = soapFactory. cr eat eNane(" Product");
SOAPE! enent product = order. addChi |l dEl ement (chi | dNang) ;
pr oduct . addText Node(" Appl e") ;

chi | dNane = soapFactory. createNane("Price");
SQAPEI enent price = order.addChil dEl enent (chi | dNane) ;
pri ce. addText Node(" 1. 56");

The code first creates the SOAPBodyEl enent object pur chaselLi nel t ens, which has a fully qualified name associated with it. That is, the
Nare object for it has a local name, a namespace prefix, and a namespace URI. As you saw earlier, a SOAPBodyEl enent object is
required to have a fully qualified name, but child elements added to it, such as SOAPElI enent objects, may have Nane objects with only
the local name.

The SAAJ code in the preceding example produces the following XML in the SOAP body:

<PQ Pur chaseLi nel tenms xm ns: PO="htt p: //ww. sonat a. frui t sgal ore/ order" >
<Or der >
<Pr oduct >Appl e</ Pr oduct >
<Price>1.56</ Price>
</ Or der >
</ PO Pur chaseLi nel t ens>

Adding and accessing attachments

Create from At t achnent Part object:

Attachnent Part attachnent = nessage. createAttachment Part () ;

At tachment Part is made of two parts: application-specific content and associated MIME headers (Content-Type):

attachnent . set M neHeader (" Cont ent - Type", "application/xm");

Adding contents to attachment (Option 1: Setting 'Content’ and 'Contentld"):

String stringContent = "Update address for Sunny Skies "

stringContent += "Inc., to 10 Upbeat Street, Pleasant G ove, CA 95439";
attachnent . set Content (stri ngContent, "text/plain");

attachnent . set Cont ent | d(" updat e_addr ess") ;

message. addAt t achnment Part (att achnment) ;

The code fragment above shows one of the ways to use the method set Cont ent . This method takes two parameters, the first being a
Java Object containing the content and the second being a Stri ng giving the content type. The Java Object may be a Stri ng, a stream,
ajavax. xnl .transform Sour ce object, or aj avax. acti vati on. Dat aHandl er object. The Java Object being added in the following code
fragment is a Stri ng, which is plain text, so the second argument must be "t ext/ pl ai n". The code also sets a content identifier, which
can be used to identify this Att achnment Part object. After you have added content to attachment, you need to add it to the SOAPMessage
object, which is done in the last line.

As with At t achnment Part . set Content (...), the Object may be a Stri ng, a stream, a j avax. xni . t ransf or m Sour ce object, or a
javax. activation. Dat aHandl er object.

Adding Contents to Attachment (Option 2: Using Dat aHandl er):

/| Create DataHandl er object
URL url = new URL ("http://greatproducts.conigiznos/ing.jpg");
Dat aHandl er dat aHandl er = new Dat aHandl er (url);

Attachnent Part attachnent = nessage. creat eAttachnent Part (dat aHandl er) ;

/] Note that there is no need to set Content Type
attachnent . set Content| d("attached_i mage") ;
nmessage. addAt t achnent Part (attachment) ;

file:///D|/workspace/wsd-guide/wsd-guide.html (102 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

The other method for creating an Att achnment Part object with content takes a Dat aHandl er object, which is part of the JavaBeans
Activation Framework (JAF). Using a Dat aHandl er object is fairly straightforward. First you create a j ava. net . URL object for the file you
want to add as content. Then you create a Dat aHandl er object initialized with the URL object: You might note two things about the
previous code fragment. First, it sets a header for Cont ent - | D with the method set Cont ent I d(...). This method takes a Stri ng that
can be whatever you like to identify the attachment. Second, unlike the other methods for setting content, this one does not take a

Stri ng for Cont ent - Type. This method takes care of setting the Cont ent - Type header for you, which is possible because one of the
things a Dat aHandl er object does is determine the data type of the file it contains.

Accessing attachments:

java.util.lterator iterator = nessage. get Attachments();
while (iterator.hasNext()) {
Attachnment Part attachnment = (AttachnmentPart)iterator.next();
String id = attachnent. get Contentld();
String type = attachnent. get Cont ent Type();
Systemout.print("Attachment " + id + " has content type " + type);
if (type == "text/plain") {
Obj ect content = attachnent. get Content();
Systemout.println("Attachment " + "contains:\n" + content);

Adding attributes to SOAPHeader El enent
SOAP Header attributes: act or and nust Under st and

The attribute act or is optional, but if it is used, it must appear in a SOAPHeader El enment object. Its purpose is to indicate the recipient of
a header element. The default actor is the message's ultimate recipient; that is, if no act or attribute is supplied, the message goes
directly to the ultimate recipient.

An actor is an application that can both receive SOAP messages and forward them to the next actor. The ability to specify one or more
actors as intermediate recipients makes it possible to route a message to multiple recipients and to supply header information that
applies specifically to each of the recipients.

For example, suppose that a message is an incoming purchase order. Its SOAPHeader object might have SOAPHeader El ement objects
with act or attributes that route the message to applications that function as the order desk, the shipping desk, the confirmation desk,
and the billing department. Each of these applications will take the appropriate action, remove the SOAPHeader El ement objects relevant
to it, and send the message on to the next actor.

An actor is identified by its URI. For example, the following line of code, in which or der Header is a SOAPHeader El ement object, sets the
actor to the given URI:

or der Header . set Actor ("http://gi znpbs. coni orders");

Additional actors may be set in their own SOAPHeader El enent objects. The following code fragment first uses the SOAPMessage object
message to get its SOAPHeader object header. Then header creates two SOAPHeader El enent objects, each of which sets its act or
attribute and nust Under st and attribute:

SCAPHeader header = nessage. get SOAPHeader () ;
SCAPFact ory soapFactory = SOAPFact ory. newl nst ance() ;

String naneSpace = "ns";
String nanmeSpaceURl = "http://giznms. com NSURI ";

Narme order = soapFactory. creat eNane("order Desk", nanmeSpace, naneSpaceUR!);
SQAPHeader El ement or der Header = header. addHeader El enent (or der) ;

or der Header . set Actor ("http://gi znos. coml orders");

or der Header . set Must Under st and(true) ;

Nane shi ppi ng = soapFact ory. cr eat eNane(" shi ppi ngDesk", naneSpace, nanmeSpaceURl);
SCQAPHeader El enent shi ppi ngHeader = header . addHeader El enent (shi ppi ng) ;

shi ppi ngHeader . set Actor ("http://gi znos. cont shi ppi ng");

shi ppi ngHeader . set Must Under st and(t rue) ;

Retrieving all SOAPHeader El enent s with a particular Actor

file:///D|/workspace/wsd-guide/wsd-guide.html (103 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

The SOAPHeader interface provides two methods that return a j ava. util.|terator object over all of the SOAPHeader El enent objects
with an actor that matches the specified act or . The first method, exam neHeader El enent s, returns an iterator over all of the elements
with the specified Actor:

/1 Note that an Actor is identified by an URL
I terator header El enents = header. exanm neHeader El enent s("http://gi znbs. coni orders");

The second method, ext r act Header El enent s, not only returns an iterator over all of the SOAPHeader El ement objects with the specified
act or attribute but also detaches them from the SOAPHeader object. So, for example, after the order desk application has done its work,
it would call ext r act Header El ement s to remove all of the SOAPHeader El enent objects that applied to it:

/1 Al headers with defined Actor are detached fromthe SOAPHeader object
I terator header El enents = header. extract Header El ement s("http://gi znbs. conf orders");

Creating SOAPHeader El enent with nust Under st and attribute

The Java code:

SCAPHeader header = nmessage. get SOAPHeader () ;

Narme name = soapFactory.createNanme("Transaction", "t", "http://giznmos.com orders");
SOAPHeader El enent transacti on = header. addHeader El enent (nane) ;

transacti on. set Must Under st and(true);

transacti on. addText Node("5");

The XML fragment:

<SOAP- ENV: Header >
<t:Transaction xmns:t="http://giznos. com orders"
SOAP- ENV: nust Under st and="1">
5
</t:Transaction>
</ SOAP- ENV: Header >

SOAPFaul t object
Represents SOAP Fault element in SOAP body. Parties that can generate SOAPFaul t (for example):

Recipient of a message in point-to-point messaging (Indicates missing address information in purchase order SOAP message)
. Messaging provider in messaging provider-based messaging (Messaging provider cannot deliver the message due to server
failure)

SOAPFaul t object contains:
1. Fault Code (mandatory)

Required in SOAPFaul t object (Ver si onM snat ch, Must Under st and, d i ent, Server).
2. Fault String (mandatory)

Human readable explanation of the fault
3. Fault Actor (conditional)

Required if SOAPHeader object has one or more act or attributes and fault was caused by header processing.
4. Detail object (conditional)

Required if the fault is error related to the SOAPBody object. If not present in G i ent fault, SOAPBody is assumed to be OK.

SOAPFaul t with no Detail object:

/| Create SOAPBody object
SOAPEnvel ope envel ope = nsg. get SOAPPart (). get Envel ope();
SCAPBody body = envel ope. get Body() ;

/] Create and fill up SOAPFault object.

file:///D|/workspace/wsd-guide/wsd-guide.html (104 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

/] Note that Detail object is not being set here since the fault has
// nothing to do wi th SOAPBody

SOAPFaul t fault = body. addFaul t();

faul t.set Faul t Code(" Server");

fault.setFaul t Actor("http://gi znos. conlf orders");
fault.setFaultString("Server not responding");

SOAPFaul t with Detail object:

/] Create SOAPFault object
SCAPFault fault = body.addFaul t();

/] Set fault code and fault string
fault.set Faul t Code("dient");
fault.setFaultString("Message does not have necessary info");

// Detail object contains two Detail Entry's

Detail detail = fault.addDetail ();

Narme entryName = envel ope. creat eNane("order", "PO', "http://gi znps. com orders/");

Detai |l Entry entry = detail.addDetail Entry(entryNane);

entry. addText Node("quantity el enent does not have a val ue");

Narme entryName2 = envel ope. creat eName("confirmation", "PO', "http://giznos. com confirnmn');
Detail Entry entry2 = detail.addDetail Entry(entryNanme2);

entry2. addText Node("| nconpl ete address: no zip code");

Retrieving SOAPFaul t :

/] Get SOAPBody obj ect
SOAPBody body = newnrsg. get SOAPPart (). get Envel ope() . get Body() ;

/] Check if SOAPFault is present in the nessage
if (body.hasFault()) {
SOAPFaul t newFault = body. get Faul t();
String code = newFaul t. get Faul t Code();
String string = newFaul t.get Faul tString();
String actor = newFaul t. get Faul t Actor();
if (actor !'=null) { Systemout.println(" fault actor =" + actor); }

Retrieving Detail Object:

/] Get Detail object
Detail newDetail = newFault.getDetail();

/] Get the list of Detail Entry's
if (newbDetail != null) {
Iterator it = newDetail.getDetail Entries();
while (it.hasNext()) {
Detai |l Entry entry = (Detail Entry)it.next();
String value = entry. get Val ue();
Systemout.println(" Detail entry =" + value);

Chapter 6. JAXR

Describe the function of JAXR in Web service architectural model, the two basic levels of business registry
functionality supported by JAXR, and the function of the basic JAXR business objects and how they map to the
UDDI data structures.

JAXR, the Java API for XML Registries, provides a standard API for publication and discovery of Web services through underlying
registries.

JAXR does not define a new registry standard. Instead, this standard Java APl performs registry operations over a diverse set of
registries and defines a unified information model for describing registry contents. Regardless of the registry provider accessed, your
programs use common APIs and a common information model. The JAXR specification defines a general-purpose API, allowing any JAXR

file:///D|/workspace/wsd-guide/wsd-guide.html (105 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

client to access and interoperate with any business registry accessible via a JAXR provider.
Capability profiles

Because some diversity exists among registry provider capabilities, the JAXR expert group decided to provide multilayer APl abstractions
through capability profiles. Each method of a JAXR interface is assigned a capability level, and those JAXR methods with the same
capability level define the JAXR provider capability profile.

Currently, JAXR defines only two capability profiles: level O profile for basic features and level 1 profile for advanced features. Level O's
basic features support so-called business-focused APls, while level 1's advanced features support generic APIs. At the minimum, all JAXR
providers must implement a level O profile. A JAXR client application using only those methods of the level O profile can access any JAXR
provider in a portable manner. JAXR providers for UDDI must be level O compliant.

JAXR providers can optionally support the level 1 profile. The methods assigned to this profile provide more advanced registry
capabilities needed by more demanding JAXR clients. Support for the level 1 profile also implies full support for the level O profile. JAXR
providers for ebXML must be level 1 compliant. A JAXR client can discover the capability level of a JAXR provider by invoking methods on
the Capabi | i tyProfil e interface. If the client attempts to invoke capability level methods unsupported by the JAXR provider, the
provider will throw an Unsuppor t edCapabi | i t yExcepti on.

NOTE, because WS-1 BP sanctions the use of UDDI, not ebXML, we MUST use JAXR level O profile.
Regi stryServi ce interfaces

The JAXR provider supports capability profiles that group the methods on JAXR interfaces by capability level. Regi stryServi ce exposes
the JAXR provider's key interfaces, that is, Web services discovery and registration. The JAXR client can obtain an instance of the

Regi st ryServi ce interface by invoking the get Regi stryServi ce() method on the connection established between the JAXR client and
JAXR provider. Once the JAXR client has the Regi stryServi ce, it can obtain the primary registry interfaces and perform life-cycle
management and query management through the JAXR provider.

The JAXR specification defines two life-cycle management interfaces:

1. Busi nessLi feCycl eManager - for level O (we MUST use this interface according to BP 1.0)
2. LifeCycl eManager - for level 1 (we MUST NOT use this interface according to BP 1.0)

Busi nessLi f eCycl eManager defines a simple business-level API for life-cycle management. This interface resembles the publisher's API
in UDDI, which should prove familiar to the UDDI developer. For its part, Li f eCycl eManager interface provides complete support for all
life-cycle management needs using a generic API.

Life-cycle management includes creating, saving, updating, deprecating, and deleting registry objects. In addition, the
Li f eCycl eManager provides several factory methods to create JAXR information model objects. In general, life-cycle management
operations are privileged, while a user can use query management operations for browsing the registry.

JAXR's top-level interface for query management, Quer yManager , has two extensions:

1. Busi nessQuer yManager - for level O (we MUST use this interface according to BP 1.0)
2. Decl arativeQueryManager - for level 1 (we MUST NOT use this interface according to BP 1.0)

Query management deals with querying the registry for registry data. A simple business-level API, the Busi nessQuer yManager interface
provides the ability to query for the most important high-level interfaces in the information model, such as Or gani zat i on, Servi ce,
Servi ceBi ndi ng, A assi ficati onSchenme, and Concept . Alternatively, the Decl ar at i veQuer yManager interface provides a more flexible,
generic API, enabling the JAXR client to perform ad hoc queries using a declarative query language syntax. Currently, the only
declarative syntaxes JAXR supports are SQL-92 and OASIS/ebXML Registry Filter Queries. As noted in the JAXR specification, ebXML
registry providers optionally support SQL queries. If a registry provider does support SQL queries, the JAXR ebXML provider will throw an
Unsupport edCapabi | i t yExcepti on on Decl ar ati veQuer yManager methods.

JAXR information model

Invoking life-cycle and query management methods on the JAXR provider requires the JAXR client to create and use the JAXR
information model objects. The JAXR information model resembles the one defined in the ebXML Registry Information Model 2.0, but
also accommodates the data types defined in the UDDI Data Structure Specification. Although developers familiar with the UDDI
information model might face a slight learning curve, once understood, the JAXR information model will provide a more intuitive and
natural interface to most developers.

Most JAXR information-model interfaces are derived from the abstract Regi st ryQbj ect interface, which defines the common state
information, called attributes, that all registry objects share. Example attributes include: key, nane, and descri pti on. The

I nternational String interface defines attributes that must be internationalization compatible, such as nane and descri pti on. The

I nternational String interface contains a collection of Local i zedStri ngs, where each Local i zedSt ri ng defines locale, character set,
and string content.

The Regi st ryQbj ect interface also defines collections of assi fi cati on, External | denti fi er, Ext er nal Li nk, and Associ ati on
objects. The Busi nessQuer yManager often uses those collections as parameters in its find methods.

Also specializations of the Regi st ryObj ect interface, the concrete interfaces Or gani zat i on, Servi ce, Servi ceBi ndi ng, Concept , and
C assi ficati onSchene provide additional state information. For example, the Or gani zat i on interface defines a collection of Servi ce

file:///ID|/workspace/wsd-guide/wsd-guide.html (106 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

objects, and Ser vi ce defines a collection of Ser vi ceBi ndi ng objects. A Ser vi ceBi ndi ng might contain a collection of

Speci fi cationLi nk objects. UDDI developers should be familiar with these concrete interfaces; they map quite well to major UDDI data

types shown in the table below:

Table 6.1. UDDI-to-JAXR information model mappings

JAXR Information Model

Organi zati on

A business, such as a corporation whose data is contained in the registry, is
represented by an Organi zati on instance. An Or gani zati on can have
multiple Or gani zat i ons under it or can refer to another organization as a
parent. An Or gani zat i on can offer one or more services, represented by
Ser vi ce objects which can be accessed via Col | ecti on

Or gani zat i on. get Servi ces() method.

Servi ce

Each Servi ce can have multiple Ser vi ceBi ndi ng objects that specify the
details about the protocol binding information for that service.

Ser vi ceBi ndi ng

Ser vi ceBi ndi ng has attributes that describe the location where the service
can be accessed. A Ser vi ceBi ndi ng is associated with one or more

Speci fi cati onLi nk objects that point to the technical specifications
defining the service (e.g., a WSDL file for the Web service).

Ser vi ceBi ndi ng instances are Regi st ryQbj ect objects that represent
technical information on a specific way to access a specific interface offered
by a Servi ce instance. A Servi ceBi ndi ng may have a set of

Speci fi cati onLi nk instances. Maps to a bi ndi ngTenpl at e in UDDI.

Cl assificati onSchenme

A d assi ficati onSchene instance represents a taxonomy that may be
used to classify or categorize Regi st ryObj ect instances. The classification
scheme, or taxonomy, can be internal or external to the registry, meaning
that the structure of the taxonomy is defined internal to the registry or is
represented somewhere outside the registry and is represented by a

Cl assi fi cati onSchene interface. A good example of an external taxonomy
for e-business is that of North American Industry Classification System
(NAICS) devised by the U.S. Census Bureau. NAICS is a classification
scheme used to classify businesses and services by the industry to which
they belong and the business processes they follow.

Concept

The Concept interface is used to represent taxonomy elements and their
structural relationship with each other in order to describe an internal
taxonomy. Concept instances are used to define tree structures where the
root of the tree is a O assi fi cati onSchene instance and each node in the
tree is a Concept instance. As any Regi stryQbj ect, a Concept may be
classified and also associated with a set of external identifiers and links.

Associ ation

A Regi stryQObj ect instance may be associated with zero or more

Regi st ryQbj ect instances. The information model defines an Associ ati on
interface, an instance of which may be used to associate any two

Regi st ryQbj ect instances. An Associ at i on instance represents an
association between a source Regi st ryQhj ect and a target

Regi st ryQbj ect . These are referred to as sour ceQbj ect and t ar get Cbj ect
for the Associ ati on instance. It is important which object is the

sour ceCbj ect and which is the t ar get Obj ect as it determines the
directional semantics of an Associ ati on. Each Associ ati on must have an
associ at i onType attribute that identifies the type of that association. The
associ at i onType attribute is a reference to an enumeration Concept as
defined by the predefined associ ati onType d assi fi cati onSchene in the
JAXR specification. An association may need to be confirmed by the parties
whose objects are involved in that Associ at i on.

UDDI Data Model

busi nessEntity

The busi nessEnti ty structure contains information
about a particular business organization and holds
references to the services it offers. busi nessEntity
is the highest in the hierarchy and contains
descriptive information. Each busi nessEntity is
identified by its busi nessKey. If its busi nessKey is
not specified at publication time, the registry will
automatically generate a key.

busi nessServi ce

busi nessSer vi ce entry indicates a logical service
and holds descriptive information about a Web
service in business terms. A busi nessService is a
child of a busi nessEnt ity that provides the service.
Information about how a busi nessServi ce can be
instantiated is contained within a bi ndi ngTenpl at e.
Each busi nessSer vi ce is has a unique identifier -
servi ceKey. This value is assigned by each UDDI
operator and cannot be edited by the publisher. It
also contains the key to its parent busi nessEntity -
busi nessKey.

bi ndi ngTenpl ate

A bi ndi ngTenpl at e contains information necessary
for a client to invoke a service. It specifies the
information for a particular Web service and provides
the URL of the service where it can be invoked. The
bi ndi ngTenpl at e also contains references to

t Model s as well as service-specific settings. A

bi ndi ngTenpl at e is a child of a busi nessServi ce.

t Model

publ i sher Assertion

file:///ID|/workspace/wsd-guide/wsd-guide.html (107 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Ext er nal Li nk

Ext er nal Li nk instances model a named URI to content that may reside
outside the registry. Regi st ryQbj ect may be associated with any number)
of Ext er nal Li nk instances to annotate a Regi st ryQbj ect with external overvi ewboc
links to external content. Consider the case where a Submitting
Organization submits a repository item (e.g. a DTD) and wants to associate
some external content to that object (e.g. the Submitting Organization's
home page). The Ext er nal Li nk enables this capability.

Classification

The O assi fi cati on interface is used to classify Regi st ryQbj ect
instances. A Regi st ryObj ect may be classified along multiple dimensions
by adding zero or more C assi fi cati on instances to the Regi stryQbj ect .
For example, an Or gani zat i on may be classified by its industry, by the keyedRef erence (in cat egor yBag)
products it sells and by its geographical location. In this example the
Regi st ryObj ect would have at least three Cl assi fi cati on instances
added to it. The Regi st ryQbj ect interface provides several

adddC assi fi cati on methods to allow a client to add O assi fi cati on
instances to a Regi stryQbj ect .

External | dentifier

Ext ernal | denti fi er instances provide the additional identifier information
to Regi st ryObj ect such as DUNS number, Social Security Number, or an
alias name of the organization. The attribute nane inherited from keyedRef erence (inidentifierBag)
Regi st ryQbj ect is used to contain the identification scheme (Social
Security Number, etc), and the attribute value contains the actual
information. Each Regi st ryObj ect s may have O or more association(s)
with Ext ernal | denti fier.

User cont act
Collection of Ext ernal | denti fi er instances identifierBag
Collection of d assi fi cati on instances cat egor yBag
Post al Addr ess addr ess

Speci fi cationLi nk

A Speci fi cationLi nk provides the linkage between a Ser vi ceBi ndi ng and
one of its technical specifications that describes how to use the service The union of t Model | nst ancel nf o and
using the Servi ceBi ndi ng. For example, a Servi ceBi ndi ng may have a i nst anceDet ail s

Speci fi cati onLi nk instance that describes how to access the service using
a technical specification in form of a WSDL document. It serves the same
purpose as the union of t Model | nst ancel nf o and i nst anceDet ai | s in
uDDI.

UDDI Example Mapped to JAXR:

file:///ID|/workspace/wsd-guide/wsd-guide.html (108 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

businessEntity

businessService

+ businessKey = "uuid:TB993..."
+ name = "Fjord Auto Inc."

+ businessServices

+ identifierBag

+ categoryBag

/:

tModel

+ tModelkey = "uuid: 8609-..."
+ name = "dnb-com:D-U-N-S"
+ description = "DUNS...."

keyedReference

+ tModelkey = "uuid:8609-..."
+ keyName = "Just Java"
+ keyValue = "43232"

=]

B

keyedReference

+ tModelkey = "uuid: C0DB9..."
+ keyName = "Transportation”
+ keyvalue = "33611"

tModel

\

+ tModelkey = "uuid: COBS..."
+ +name = "ntis-gov:naics:1997"
+ description = "NAICS...."

tModel

+ tModelkey = "uuid:4453..."
+ name = "myWSDLFile"
+ description = "...."

+ serviceKey = "23T70..."
+ name = "Purchasing Service"
+ bindingTemplates

1..n

bindingTemplate

+ bindingKey = "SE2D412E5..."

+ tModellnstanceDetails

+ accessPoint = "http: /v fj.com/...

1..n

tModellnstancelnfo

+ tModelkey = "uuid:4453..."
+ tModelInstanceDetails

0..n

overviewDoc

+ description = "Fjord Autos purchasing service"
+ overviewlURL = "http:/fvaw.fj.com/purchasing”

Service

Organization

+ key.id = "uuid:TB993..."
+ name = "Fjord Auto Inc."
+ services

+ externalldentifier

+ classifications

ClassificationScheme

+ key.id = "uuid:8609-..."
+ name = "dnb-com:D-U-MN-5"
+ description = "DUNS...."

ClassificationScheme

+ key.id = "uuid: COBY..."
+ name = "ntis-gov:naics:1997"
+ description = "MAICS...."

+ key.id = "23770..."
+ name = "Purchasing Service"

Externalldentifier

+ serviceBindings

+ name = "Just Java"
+ value = "45232"

+ identificationScheme = "uuid:8609-...

1..n

Classification

+ name = "Transportation”
+wvalue = "33611"

+ classificationScheme = "uuid: COBY...

- specificationObject

Concept 1

+ key.id = "uuid:4453..."
+ name = "myWSDLFile"
+ description = "...."

ServiceBinding

+ key.id = "SEZD412E5..."

+ specificationLinks

+ accessURI = "http:/fvavve.fj.com/..."

1..n

SpecificationLink

+ specificationObject.key.id = "uuid:4453..."
+ usageDescription
+ usageParameters

0..n

ExternalLink

+ description = "Fjord Autos purchasing service"
+ externalURI = "http:/wnener.fi.com/purchasing”

file:///ID|/workspace/wsd-guide/wsd-guide.html (109 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

+ description = "Fjord Autos purchasing service"
+ externalURI = "http://vwwnw.fj.com/purchasing”

Table 6.2. Mapping of UDDI Inquiry API Calls To JAXR (Busi nessQuer yManager)

UDDI Method Busi nessQuer yManager Method
find_binding findServi ceBi ndi ngs
find_business findOrgani zati ons
find_rel at ed_busi ness findAssoci at edObj ect s(Regi st ryCbj ect, asoci ati onType)
find_service findServices
find_t Model findConcepts, findC assifi cati onSchenes
get _bi ndi ngDet ai | Not needed. Handled transparently by JAXR provider
get _busi nessDet ai | Not needed. Handled transparently by JAXR provider
get _busi nessDet ai | Ext Unsupported. Use Regi st ryServi ce. makeRegi st rySpeci f i cRequest
get _serviceDetail Not needed. Handled transparently by JAXR provider
get _t Model Det ai | Not needed. Handled transparently by JAXR provider

Table 6.3. Mapping of UDDI Publisher API Calls to JAXR (Busi nessLi f eCycl eManager)

UDDI Method Busi nessLi f eCycl eManager Method
add_publ i sher Asserti ons saveAssoci ati ons(associ ati ons, replace), Associ ation.confirm
del et e_bi ndi ng del et eSer vi ceBi ndi ngs
del et e_busi ness del et eOr gani zati ons

del et e_publ i sher Asserti ons | del et eAssoci ati ons

del et e_service del et eServi ces

del et eC assi fi cati onsSchenes, del et eConcepts.

del et e_t Model NOTE, In UDDI del et e_t Model does not delete the t Model . It simply hides it from fi nd_t Model
calls. The Quer yManager . get Regi st ryQbj ect calls will still return the deleted t Model after a
del et eConcept s or del et ed assi fi cati onSchenes call.

di scard_aut hToken Not needed. Handled transparently by JAXR provider

findAssoci ations(findQulifiers, associationTypes, sourceObjectConfirned,

get _assertionStat usReport t ar get Obj ect Conf i r ned)

get _aut hToken Not needed. Handled transparently by JAXR provider
get _publisherAssertions Quer yManager . get Regi st ryObj ect s(obj ect Type)
get _regi steredlnfo Quer yManager . get Regi st ryQbj ect s

save_bi ndi ng saveSer vi ceBi ndi ngs

save_busi ness saveOr gani zati ons

save_service saveServi ces

save_t Model saveCd assi ficati onsSchenes, saveConcept s

set _publ i sher Assertions saveAssoci ati ons(assi ati ons, repl ace)

The JAXR specification defines the following information model interfaces:

. Organization instance is a Regi st ryObj ect that provides information on an organization that has been published to the
underlying registry.

. Service instance is a Regi st ryQbj ect that provides information on services (e.g., Web Service) offered by an Or gani zati on. An
Or gani zat i on can have a set of Servi ce objects.

. Servi ceBi ndi ng instance is a Regi st ryQbj ect that represents technical information on how to access a specific interface offered
by a Servi ce instance. A Servi ce can have a collection of Ser vi ceBi ndi ng objects.

. SpecificationLink links a Servi ceBi ndi ng with its technical specifications that describe how to use the service. For example, a
Ser vi ceBi ndi ng might have Speci fi cati onLi nk instances that describe how to access the service using a technical specification
in the form of a WSDL (Web Services Description Language) document.

. Oassificati onSchene instance represents a taxonomy that you can use to classify or categorize Regi st ryObj ect instances.

. Cassification instances classify a Regi st ryQbj ect instance using a classification scheme. Because classification facilitates
rapid discovery of Regi st ryQbj ect instances within the registry, the ability to classify Regi st ryObj ect instances in a registry is

file:///ID|/workspace/wsd-guide/wsd-guide.html (110 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

one of the registry's most significant features.

. Concept instance represents an arbitrary notion, or concept. It can be virtually anything.
Associ at i on instances define many-to-many associations between objects in the information model.

. Regi stryPackage instances group together logically related Regi st r yObj ect instances. A Regi st ryPackage might contain any
number of Regi st ryObj ect instances, and a Regi st ryObj ect can be a member of any number of Regi st ryPackage objects.

. External I dentifier instances provide identification information to a Regi st ryChj ect . You can base such identification on well-
known identification schemes such as DUNS (D&B's Data Universal Numbering System) number and social security number.
Ext er nal Li nk instances provide a link to content managed outside the registry using a URI (uniform resource identifier).

. Sl ot instances dynamically add arbitrary attributes to Regi st ryQbj ect instances at runtime, an ability that enables extensibility
within the information model.

. Most interfaces in the JAXR information model extend the Ext ensi bl eObj ect interface. It provides methods that allow the
addition, deletion, and lookup of Sl ot instances.
Audi t abl eEvent instances are Regi st ryCbj ect instances that provide an audit trail for Regi st r yObj ect instances.

. Affiliated with Or gani zat i on, User objects are Regi st ryQbj ect instances that provide information about registered users within
the registry. You use User objects in a Regi st ryQbj ect 's audit trail.

. Post al Addr ess defines a postal address's attributes. Currently, it provides address information for a User and an Or gani zati on.

Use JAXR to connect to a UDDI business registry, execute queries to locate services that meet specific
requirements, and publish or update information about a business service.

Establish a connection between a JAXR client and JAXR provider

The JAXR client must first connect to the JAXR provider. This connection contains the client state and preference information used when
the JAXR provider invokes methods on the registry provider.

Before executing any registry operation, a JAXR client connects with a JAXR provider as shown in the following code:

i mport javax.xml .registry.*;

[/l Get an instance of ConnectionFactory object
Connect i onFactory connFactory = Connecti onFactory. newl nstance();

/] Define connection configuration properties

/] Set URLs of the query service and publishing service
Properties props = new Properties();

props. set Property("javax.xml .regi stry. queryManager URL",
"http://uddi.ibmcomtestregistry/inquiryapi");

props. set Property("javax.xm .registry.|ifeCycl eManager URL",
"https://uddi.ibm conltestregistry/protect/publishapi");

/1 1f JAXR client goes outside firewall for query, set up HTTP proxy
props. set Property("com sun. xm . registry. http. proxyHost", "nyhost. nydonmain");
props. set Property("com sun. xm . regi stry. http. proxyPort", "8080");

[/ 1f JAXR client goes outside firewall for update, set up HTTPS proxy
props. set Property("com sun. xm . regi stry. https. proxyHost", "nmyhost. mydonmai n");
props. set Property("com sun. xm . registry. https. proxyPort", "8080");

/'l Set up properties and create Connecti on obj ect
connFactory. set Properti es(props);
Connecti on connection = connFactory. createConnecti on();

If the JAXR client wishes to submit data to the registry, the client must set authentication information on the connection. Note that the
establishment of this authentication information with the registry provider is registry-provider specific and negotiated between the
registry provider and the publishing user, often in the form of a Web-based interface. The user does not use the JAXR API to negotiate
and establish an account with the registry provider. After establishing a connection, the JAXR client can obtain Regi stryServi ce
interfaces for Web Services discovery and publishing:

/] Cet RegistryService object
Regi stryService rs = connecti on. get Regi stryService();

/] Get QueryManager and LifeCycl eManager objects for

/1 JAXR Busi ness APl (Capability Level O - UDDI oriented)

Busi nessQuer yManager bgm = rs. get Busi nessQuer yManager () ;

Busi nessLi f eCycl eManager bl cm = rs. get Busi nessLi f eCycl eManager () ;

This example also demonstrates how to obtain the business-focused interfaces, the Busi nessLi f eCycl eManager and the
Busi nessQuer yManager , to perform registry operations shown in later examples:

/*

file:///D|/workspace/wsd-guide/wsd-guide.html (111 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

* Establish a connection to a JAXR provider.

* Set authentication information, communication preference.

* Cet business-focused di scovery and publish interfaces.

*/

public void makeConnection() {

/1 URLs for RegistryServer
String queryURL = "http://| ocal host/ Regi stryServer Servl et";
String publishURL = "http://| ocal host/ Regi stryServerServlet";

/*
* Define connection configuration properti es.
* For sinple queries, you need the query URL.
* To use a |life-cycle manager, you need the publish URL.
*/
Properties props = new Properties();
props. set Property("javax. xm . regi stry. quer yManager URL", queryUrl);
props. set Property("javax. xm .registry.|ifeCycl eManager URL", publishUrl);

try {
/] Create the connection, passing it the configuration properties
Connecti onFactory factory = Connecti onFactory. newl nst ance();
factory. set Properti es(props);
connection = factory. createConnection();
System out. printl n("Created connection to registry");

/Il Get registry service and managers
Regi stryService rs = connection. get Regi stryService();

/l Get the capability profile
Capabi lityProfile capabilityProfile =
regi stryService. get CapabilityProfile();
if (capabilityProfile.getCapabilityLevel () == 0) {
System out. println("Capability Level 0, Business Focused API");
}

/] Cet manager capabilities fromregistry service

Busi nessQuer yManager bgm = rs. get Busi nessQuer yManager () ;

Busi nesslLi f eCycl eManager bl cm = rs. get Busi nessLi f eCycl eManager () ;

Systemout.println("Got registry service, query nanager and |ifecycle
manager") ;

/] Set client authorization information for privileged registry operations

Passwor dAut hent i cati on passwdAut h = new Passwor dAut henti cati on(user nane,
password. toCharArray());

Set creds = new HashSet ();

creds. add(passwdAut h) ;

/1 Set credentials on the JAXR provider
connection. set Credenti al s(creds);
System out. println("Established security credentials");

/] Set conmuni cation preference
connecti on. set Synchronous(true);

} catch (Exception e) {
e.printStackTrace();
if (connection != null) {
try {
connection. cl ose();
} catch (JAXRException je) {
}

Registry operation: execute queries to locate services

Now that the JAXR client has established a connection with the JAXR provider and obtained the Busi nessQuer yManager and

Busi nesslLi f eCycl eManager from the Regi stryServi ce interface, the client can now invoke methods on these interfaces. Often, a JAXR
client will wish to discover the services an organization offers. To do so, the JAXR client would invoke methods on the

Busi nessQuer yManager .

JAXR defines top-level interface for query management called Quer yManager . There are two extensions of Quer yManager interface and
they are called Busi nessQuer yManager and Decl ar ati veQuer yManager . Interface Busi nessQuer yManager provides a simple business-

file:///D|/workspace/wsd-guide/wsd-guide.html (112 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

level API that provides the ability to query for the most important high-level interfaces in the information model.

Interface Decl ar at i veQuer yManager provides a more flexible generic API that provides the ability to perform ad hoc queries using a
declarative query language syntax. Currently the only declarative syntax supported is SQL-92. In version 1 of JAXR, it is optional for a
JAXR provider to provide support for SQL query syntax.

This example shows how to find all the organizations in the registry whose names begin with a specified string, gStri ng, and to sort
them in alphabetical order:

[/l Define find qualifiers. Sort by name.
Col | ection findQualifiers = new ArrayList();
findQualifiers.add(Fi ndQualifier.SORT_BY_NAME _DESC);

// Define name patterns. Organization nane begins with gString.
Col | ection nanePatterns = new Arraylist();
nanmePat t erns. add(qStri ng);

/1 Find organi zations using the nane

Bul kResponse response = bgm fi ndOrgani zati ons(findQualifiers, nanePatterns, null, null,
null, null);

Col | ection orgs = response. get Col | ection();

Another example shows how to find all the organizations in the registry using case sensitive name pattern:

/1 Define find qualifiers. Do case sensitive search.
Col | ection findQualifiers = new ArrayList();
findQualifiers.add(Fi ndQualifier.CASE_SENSI TI VE_MATCH) ;

/] Define name patterns. Organi zati on nanme contai ns gString.
Col | ection nanePatterns = new Arraylist();
nanePatterns. add("% + qString + "%);

/] Find organi zati ons using the nane

Bul kResponse response = bgm fi ndOrgani zati ons(findQualifiers, namePatterns, null, null,
null, null);

Col | ection orgs = response. get Col | ection();

Steps for finding Or gani zati on by d assi fication:

1. Decide on classification scheme (taxonomy)
2. Build a classification within a particular classification scheme
3. Specify the classification as an argument to the fi ndOr gani zat i ons method

To find organizations by classification, you need to establish the classification within a particular classification scheme and then specify
the classification as an argument to the fi ndOr gani zati ons method. The following code fragment finds all organizations that correspond
to a particular classification within the North American Industry Classification System (NAICS) taxonomy:

I/ Get classification schene. Taxonony is NAICS.
Cl assi ficati onScheme cScheme = bgm fi ndC assi fi cati onSchemeByNanme(nul |, "ntis-gov: nai cs");

// Build classifications

Classification classification = blcm created assification(cSchene,
"Snack and Nonal cohol i c Beverage Bars", "722213");

Col | ection classifications = new ArrayList();

classifications.add(cl assification);

/] Find organi zations via O assification

Bul kResponse response = bgm findOrgani zati ons(null, null, classifications, null, null,
null);

Col | ection orgs = response. get Col | ection();

To find WSDL Specification Instances: use classification scheme of "uddi - or g: t ypes". In JAXR, a concept is used to hold information
about a WSDL specification. JAXR client must find the specification concepts first, then the organizations that use those concepts. Once
you get organizations, you can then get services and bi ndi ngTenpl at es:

/] Get classification schenme. Taxonony is uddi-org:types.
String schemeNane = "uddi -org:types";

file:///D|/workspace/wsd-guide/wsd-guide.html (113 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Cl assificati onSchene uddi OrgTypes = bgm fi ndCl assi fi cati onScheneByName(nul |, scheneNane);

/]l Create a classification, specifying the scheme

/1 and the taxonony name and val ue defined for WSDL

/] docunents by the UDDI specification.

Cl assification wsdl SpecCl assification = bl cm createC assification(uddi O gTypes,
"wsdl Spec", "wsdl Spec");

Col I ection classifications = new ArrayList();

cl assifications. add(wsdl SpecCl assi fication);

// Find concepts
Bul kResponse br = bgm findConcepts(null, null, classifications, null, null);

[/ Display information about the concepts found
Col | ection specConcepts = br.getCollection();
Iterator iter = specConcepts.iterator();
if (liter.hasNext()) {
System out. println("No WSDL specification concepts found");
} else {
while (iter.hasNext()) {
Concept concept = (Concept) iter.next();
String name = get Name(concept);
Col l ection |inks = concept.get External Li nks();
System out. println("Specification Concept: Name: " + name +
"Key: " + concept.getKey().getld() + "Description: " +
get Descri pti on(concept));
if (links.size() > 0) {
External Link link = (External Link) links.iterator().next();
System out. println("URL of WBDL docunent: '" +
link.getExternal URI() + "'");

/1 Find organi zations that use this concept

Col | ecti on specConceptsl = new Arraylist();

specConcept s1. add(concept) ;

br = bgm findOrgani zations(null, null, null, specConceptsl, null, null);
/] Display information about organizations

Finding Services and Service Bindings from Organization:

Iterator orglter = orgs.iterator();
while (orglter.hasNext()) {
Organi zation org = (O gani zation) orglter.next();
Col | ecti on services = org. get Services();
Iterator svclter = services.iterator();
while (svclter.hasNext()) {
Service svc = (Service) svclter.next();
Col | ection serviceBi ndi ngs = svc. get Servi ceBi ndi ngs() ;
Iterator sblter = serviceBindings.iterator();
while (sblter.hasNext()) {
Servi ceBi nding sb = (ServiceBinding) sblter.next();
}

Another example use case might be the following:

A user browsing the UDDI registry wishes to find an organization that provides services of the NAICS (North American Industry
Classification System) type Computer Systems Design and Related Services in the United States. To perform this query with JAXR, the
user would invoke a fi ndOrgani zati on() method with classification listed under the well-known taxonomies NAICS and ISO 3166
Geographic Code System (ISO 3166). As JAXR provides a taxonomy service for these classifications, the client can easily access the
classification information needed to be passed as fi ndOr gani zati on() parameters. A sample of this query to the taxonomy service and
registry follows below:

public void findO ganizations() throws JAXRException {

/1 Search criteria -- Oganizations found will return in this sort order
Col l ection findQualifiers = new ArrayList();

file:///D|/workspace/wsd-guide/wsd-guide.html (114 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

findQualifiers.add(Fi ndQualifier.SORT_BY_NAME DESC);

/'l Query the JAXR taxonony service
Cl assificati onSchene nai cs = busi nessQueryManager. fi ndCl assi fi cati onScheneByNane(
findQualifiers, "ntis-gov:naics:1997");

/Il Create the classification that will be a paranmeter to findOr gani zation() method
Cl assification conputer Syst ensDesi gn =
busi nessLi f eCycl eManager . creat eCl assi fi cati on(
nai cs, "Conmputer Systens Design and Rel ated Services", "5415");

/1l Query the taxonony service
Cl assi fi cati onSchene geography =
busi nessQuer yManager . fi ndCl assi fi cati onScheneByNane(
findQualifiers, "iso-ch:3166:1999");

/Il Create the classification passed as a paraneter to findOrganizati on() method.
Cl assification us = businessLifeCycl eManager. creat ed assi ficati on(
geography, "United States", "US");

/1 Add classifications to the classifications collection paraneter
Col l ection classifications = new ArrayList();

cl assifications. add(conput er Syst ensDesi gn) ;

cl assifications.add(us);

/'l I nvoke the findOrganizations() nethod on Busi nessQuer yManager
Bul kResponse bul kResponse = busi nessQuer yManager . fi ndOr gani zat i ons(
findQualifiers, null, classifications, null, null, null);

i f (bul kResponse. get Status() == JAXRResponse. STATUS_SUCCESS) {
System out . printl n("Found Organi zation |ocated in the United States
)i
System out. println("categorized Conputer Systens Design and Rel ated
Service ");

}
}

Most calls invoked on the registry provider via the JAXR provider return a Bul kResponse that contains any registry exceptions
encountered and a collection of concrete Regi st ryQbj ect instances or Regi st ryChj ect keys. To ensure that a registry invocation
always returns a response, any exceptions generated by the registry provider are wrapped in a Regi stryExcepti on and stored in the
Bul kResponse's exceptions collection. In the case of fi ndXXX(...) methods, any Regi st ryCbj ect s found are contained in the

Bul kResponse collection.

For the above fi ndOrgani zati on() method, the Bul kResponse contains a collection of Or gani zat i on objects found in the registry
provider that match the classifications passed as parameters to the method. However, these Or gani zat i on objects provide limited
information about the Or gani zat i on and its Ser vi ce objects such as key, nane, and descri pti on. Another value-added feature of JAXR
is the incremental loading of Regi st ryObj ect details. For instance, in the case of a JAXR UDDI provider, a JAXR fi ndOr gani zati on()
method transforms to a UDDI fi nd_Busi ness request. After invocation, the fi nd_Busi ness request returns minimal business and
service information such as ID, name, and description. Using UDDI APIs, a UDDI client would need to make an additional call such as
get _Busi nessDetai | () to retrieve the organization details. With JAXR, the JAXR UDDI provider performs this invocation to the registry
provider on an as-needed basis. The JAXR client can access Or gani zat i on and other Regi st ryQbj ect details by using the get XXX()
methods on the JAXR information model interfaces. The get Or gani zat i onDet ai | () method demonstrates how a JAXR client would
obtain full Or gani zat i on details:

public void get Organi zati onDet ai | (Bul kResponse bul kResponse) throws JAXRException {

/1l Get a collection of Organizations from Bul kResponse
Col | ecti on organi zati ons = bul kResponse. get Col | ecti on();

/1 lterate through the collection to get an individual Organization
Iterator orglter = organi zations.iterator();

while (orglter.hasNext()) {
Organi zation organi zati on = (Organi zation) orglter.next();

/] Get a collection of Services froman O ganization
Col | ection services = organization. get Services();

// lterate through the collection to get an individual Service
Iterator servicelter = services.iterator();

whil e (servicelter.hasNext()) {
Service service = (Service) servicelter.next();

file:///D|/workspace/wsd-guide/wsd-guide.html (115 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

/l Get a collection of ServiceBindings froma Service
Col | ection serviceBi ndings = service. get Servi ceBi ndi ngs() ;

/] lterate through the collection to get an individual ServiceBinding
Iterator sblter = serviceBindings.iterator();
while (sblter.hasNext()) {

Servi ceBi ndi ng servi ceBinding = (ServiceBinding) sblter.next();

/1 Get URI of the service. You can access the service through this URI.

String accessURI = serviceBindi ng. get AccessURI () ;

System out. printl n("Access the service " + service. get Name(). get Val ue()
+ " at this URI " + accessURl);

/1l Get a collection of SpecificationLinks froma ServiceBi ndi ng.

/| SpecificationLinks provide further technical details needed to access the
servi ce.

Col | ecti on specificationLi nks = servi ceBi ndi ng. get Speci fi cati onLi nks();

/1 lterate through the collection to get an individual SpecificationLink
Iterator linklter = specificationLinks.iterator();
while (linklter.hasNext()) {

Speci fi cationLi nk specificationLink = (SpecificationLink) |inklter.next();

/'l Get a collection of External Links from SpecificationLink
/1 An External Link points to technical detail necessary to invoke the service
Col | ection external Li nks = specificationLi nk. get Ext er nal Li nks();

/] lterate through the collection to get an External Li nk
Iterator elinklter = external Links.iterator();
while (elinklter.hasNext()) {

Ext er nal Li nk external Li nk = (External Link) elinklter.next();

/1 The external URI is the pointer to the technical details
/] necessary to invoke the service
String external URI = external Li nk. get Ext ernal URI () ;
System out . printl n(
" Use the technical detail at this URI, "
+ external URI + " to invoke the service, " +
+ service. get Nane() . get Val ue());

}

/] Cbtain usage description
International String usageDescri ption = specificationLi nk. get UsageDescri ption();

/1l Any paraneters necessary to invoke service are in usageParaneter collection
Col | ecti on usagePar aneters = specificati onLi nk. get UsagePar anet ers() ;

/1l Get the specification concept fromthe specification |ink
/1 This specificati onConcept is equivalent to the tMdel registered as
/1 the technical specification
Concept specificationConcept = (Concept)

speci fi cationLi nk. get Speci fi cati onObj ect () ;

}
}
}
}
}

Registry operation: publish or update information about a business service

The JAXR client also publishes Web services, another important registry operation. In addition to discovering partner organization
information and services, an organization will want to register its information and services in the registry for partner use. If a JAXR client
wishes to publish an organization and its services to a registry, the client uses the Li f eCycl eManager or the more focused

Busi nessLi f eCycl eManager . Clients familiar with UDDI should use the Busi nessLi f eCycl eManager , which provides methods for saving
information to the registry provider. Since this is a privileged operation, the user must set authentication information on the JAXR
connection. Note that the JAXR provider, not the JAXR client, performs authentication with the registry provider. The JAXR provider
negotiates this authentication with the registry provider on an as-needed basis, and the authentication is completely transparent to the
JAXR client.

JAXR specification defines two interfaces — Li f eCycl eManager interface and Busi nessLi f eCycl eManager interface. Li f eCycl eManager
interface provides complete support for all life cycle management needs using a generic APIl. Busi nessLi f eCycl eManager interface
defines a simple business-level API for life cycle management of some important high-level interfaces in the information model. This
interface provides no new functionality beyond that of Li f eCycl eManager . The goal of defining this interface is to provide an API similar

file:///D|/workspace/wsd-guide/wsd-guide.html (116 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

to that of the publisher’s APl in UDDI. The intent is to provide a familiar APl to UDDI developers.

Before it can submit data, the client must send its username and password to the registry in a set of credentials. The following code
fragment shows how to do this:

/] Set userid/ password
String username = "myUser Nane";
String password = "nmyPassword";

/Il Create authentication object
Passwor dAut hent i cati on passwdAuth = new Passwor dAut henti cati on(user nane,
password. toChar Array());

// Set the credential with registry provider
Set creds = new HashSet () ;

creds. add(passwdAut h) ;

connection. set Credenti al s(creds);

The client creates the organization and populates it with data before saving it. An Or gani zat i on object is one of the more complex data
items in the JAXR API. It normally includes the following:

A Nane object

A Descri ption object

A Key object, representing the ID by which the organization is known to the registry

A PrimaryCont act object, which is a User object that refers to an authorized user of the registry. A User object normally includes
a Per sonNane object and collections of Tel ephoneNunber and Enei | Addr ess objects.

A collection of d assi fi cati on objects

Ser vi ce objects and their associated Ser vi ceBi ndi ng objects

PONE

2

Creating an Or gani zat i on:

/] Create organizati on nane and descri ption

Organi zation org = bl cm createOrgani zati on(" The Cof fee Break");

International String s = blcmcreatelnternational String("Purveyor of the finest coffees");
org. set Description(s);

/] Create primary contact, set nane

User prinmaryContact = blcm createUser();

Per sonNane pNane = bl cm creat ePer sonNane("Jane Doe");
pri mar yCont act . set Per sonNanme(pNane) ;

/] Set primary contact phone nunber

Tel ephoneNunber t Num = bl cm cr eat eTel ephoneNunber () ;
t Num set Nurber (" (800) 555-1212");

Col | ecti on phoneNuns = new ArraylList();

phoneNuns. add(t Num) ;

pri maryCont act . set Tel ephoneNunber s(phoneNuns) ;

/] Set primary contact enmil address

Emai | Addr ess enmi | Address = bl cm creat eEnai | Addr ess("] ane. doe@heCof f eeBr eak. cont') ;
Col | ection enmil Addresses = new ArrayList();

enui | Addr esses. add(enmi | Addr ess) ;

pri maryCont act . set Emai | Addr esses(enui | Addr esses) ;

/] Set primary contact for organization
org. set Pri mar yCont act (pri mar yCont act) ;

Steps of Adding Classification:

1. Use Busi nessQuer yManager to find the taxonomy to which the organization wants to belong to
2. Create a classification using the classification scheme and a concept (a taxonomy element) within the classification scheme
3. Add the classification to the organization

Example of Adding Classification to Organization:

/] Set classification schene to NAICS
Cl assi ficati onScheme cScheme = bgm fi ndC assi fi cati onSchemeByNanme(nul |, "ntis-gov: nai cs");

// Create and add cl assification
Classification classification = blcmcreated assification(cScheme, "Snack and Nonal coholic

file:///D|/workspace/wsd-guide/wsd-guide.html (117 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Bever age Bars", "722213");

Col | ection classifications = new ArrayList();
classifications. add(cl assification);

org. addd assi fications(cl assifications);

JAXR Provider Must Provide Taxonomies of:
1. The North American Industry Classification System (NAICS)

http://www.census.gov/epcd/www/naics.html
2. Universal Standard Products and Services Classification (UNSPSC)

http://www.eccma.org/unspsc/
3. IS0 3166 country codes classification system maintained by the International Organization for Standardization (I1SO)

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

Suppose the organization "Fly Away Airline Travel Agents" has a Web-based airline reservation service that its partner travel agencies
must be able to use. The following code creates such a business and saves it to the registry. The business has contact information, a set
of services it offers, and technical information for accessing those services:

public void saveOrgani zation() throws JAXRException {

/'l Create Organization in nenory
Organi zation org = busi nessLi feCycl eManager. creat eOrgani zati on("Fly Away Airline
Travel Agents");

/1l Create User -- maps to Contact for UDDI

User user = busi nessLifeCycl eManager. createUser();

Per sonNarme personNane = busi nessLi f eCycl eManager . cr eat ePer sonNanme(" Marie A
Travel er");

Tel ephoneNunber tel ephoneNunber =

busi nessLi f eCycl eManager . cr eat eTel ephoneNunber () ;
t el ephoneNunber . set Nunber (" 781- 333- 3333") ;
t el ephoneNunber . set Type("office");
Col | ecti on nunbers = new ArrayList();
nunber s. add(t el ephoneNunber) ;

Emai | Address emai | =

busi nessLi f eCycl eManager . cr eat eEmai | Address("mari eb@irlinetravel.cont, "office");
Col | ecti on enmi | Addresses = new ArraylList();
emai | Addr esses. add(emai |) ;

user . set Per sonNane(per sonNane) ;

Col | ecti on tel ephoneNunbers = new Arraylist();
t el ephoneNunber s. add(t el ephoneNunber) ;

user . set Tel ephoneNunber s(t el ephoneNunber s) ;
user . set Emai | Addr esses(enai | Addr esses) ;

org. set Pri maryCont act (user);

/]l Create service with service name and description

Servi ce service = businessLifeCycl eManager. createService("Fly Anay Airline
Reservati on Service");

servi ce. set Descri pti on(busi nessLi f eCycl eManager . creat el nternational String("Flight
Reservati on Service"));

/1 Create serviceBinding
Servi ceBi ndi ng servi ceBi ndi ng = busi nessLi f eCycl eManager . cr eat eSer vi ceBi ndi ng() ;
servi ceBi ndi ng. set Descri ption(busi nessLi f eCycl eManager .
createlnternational String("Information for airline reservation service
access"));

/[Turn validation of URI off
servi ceBi ndi ng. set Val i dat eURI (f al se);

servi ceBi ndi ng. set AccessURI ("http://ww. airlinetravel .com 8080/ services.reservations. htm

Bk

/| Create the SpecificationLink information
Speci fi cati onLi nk speci ficationLink =
busi nessLi f eCycl eManager . cr eat eSpeci fi cati onLi nk();

file:///D|/workspace/wsd-guide/wsd-guide.html (118 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

/1 Set usage description

speci fi cationLi nk. set UsageDescri pti on(busi nessLi f eCycl eManager .
createlnternational String("Search for Reservations when pronpted"));

String usageParaneter = "Enter travel agent id when pronpted";

Col | ecti on usageParaneters = new ArraylList();

usagePar anet er s. add(usagePar anet er) ;

/| Set usage paraneters
speci fi cati onLi nk. set UsagePar anet er s(usagePar anet er s) ;

/1 Set specificati onConcept on the specificationLink
Concept httpSpecificati onConcept =
(Concept)
busi nessLi f eCycl eManager . cr eat eCbj ect (busi nessLi f eCycl eManager . CONCEPT) ;
Key httpSpecificati onKey =
busi nessLi f eCycl eManager . cr eat eKey (" uui d: 68de9e80- ad09- 469d- 8a37-
088422bf bc36") ;
htt pSpeci fi cati onConcept . set Key(htt pSpeci fi cati onKey) ;
speci ficati onLi nk. set Speci fi cati onQbj ect (htt pSpecificati onConcept);

/1 Add the specificationLink to the serviceBinding
servi ceBi ndi ng. addSpeci fi cati onLi nk(speci fi cati onLi nk) ;

/1 Add the serviceBinding to the service
servi ce. addSer vi ceBi ndi ng(servi ceBi ndi ng) ;

/1 Add the service to the organi zation
or g. addSer vi ce(service);

/1 Add classifications to the organization
Cl assificati onSchene naics =
busi nessQuer yManager . fi ndCl assi fi cati onScheneByName(nul |, "ntis-
gov: nai cs");
Classification classification =
busi nessLi f eCycl eManager . creat e assi fication(naics, "Air Transportation",
"481");
org. addd assi fication(cl assification);
Col l ection orgs = new ArraylList();
orgs. add(org);

/| Save organi zati on and whole tree of related objects
Bul kResponse br = busi nesslLi f eCycl eManager . saveOr gani zat i ons(or gs) ;

if (br.getStatus() == JAXRResponse. STATUS SUCCESS) {
System out. printl n("Successfully saved the organization to the registry
provider.");
}
}

Chapter 7. J2EE Web Services

Identify the characteristics of and the services and APIs included in the J2EE platform.

1212

Explain the benefits of using the J2EE platform for creating and deploying Web service applications.

1212

Describe the functions and capabilities of the JAXP, DOM, SAX, JAXR, JAX-RPC, and SAAJ in the J2EE platform.
1212

Describe the role of the WS-l Basic Profile when designing J2EE Web services.

WS-1 is an open industry effort chartered to promote Web Services interoperability across platforms, applications, and programming
languages. The organization brings together a diverse community of Web services leaders to respond to customer needs by providing
guidance, recommended practices, and supporting resources for developing interoperable Web services.

Basic Profile is organized around base specifications. Profile adds constraints and guidance as to their interoperable usage based upon
implementation experience.

file:///D|/workspace/wsd-guide/wsd-guide.html (119 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Messaging: XML Representations of SOAP Mesasge
Areas Clarified:

. Fault messages

SOAP encodi ngSt yl e attribute
. DTDs and PlIs
. SOAP trailers

SOAPAct i on HTTP header

SOAP encodi ngStyl e Attribute

. The soap: encodi ngSt yl e attribute is used to indicate the use of a particular scheme in the encoding of data into XML
However, this introduces complexity, as this function can also be served by the use of XML Namespaces. As a result, the Profile
prefers the use of | i t eral , non-encoded XML.
R1005: A MESSAGE MUST NOT contain soap: encodi ngSt yl e attributes on any of the elements whose namespace name is
"htt p://schemas. xnl soap. or g/ soap/ envel ope/ "

. R1006: A MESSAGE MUST NOT contain soap: encodi ngSt yl e attributes on any element that is a child of soap: Body
R1007: A MESSAGE described in an rpc-1iteral binding MUST NOT contain soap: encodi ngSt yl e attribute on any elements are
grandchildren of soap: Body

SOAP's use of XML: DTDs and Pls

XML DTDs and Pls may introduce security vulnerabilities, processing overhead and ambiguity in message semantics when used in
SOAP messages. As a result, these XML constructs are disallowed by section 3 of SOAP 1.1.
R1008 A MESSAGE MUST NOT contain a Document Type Declaration (DTD)

. R1009 A MESSAGE MUST NOT contain Processing Instructions (PI)

SOAP Trailers

The interpretation of sibling elements following the soap: Body element is unclear. Therefore, such elements are disallowed.
. R1011: A MESSAGE MUST NOT have any element children of soap: Envel ope following the soap: Body element.

SOAP Trailers: Incorrect Usage

<soap: Envel ope xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/"' >
<soap: Body>
<p: Process xm ns: p='http://exanpl e. org/ Operati ons' />
</ soap: Body>
<m Data xm ns: n¥' http://exanple.org/informtion' >
Here is sone data with the nessage
</ m Dat a>
</ soap: Envel ope>

SOAP Trailers: Correct Usage

<soap: Envel ope xm ns: soap='http://schemas. xm soap. or g/ soap/ envel ope/' >
<soap: Body>
<p: Process xm ns: p=' http://exanpl e. org/ Operati ons' >
<m Data xm ns: n¥' http://exanple.org/information' >
Here is some data with the nessage
</ m Dat a>
</ p: Process>
</ soap: Body>
</ soap: Envel ope>

SOAPAct i on

. Interoperability testing has demonstrated that requiring the SOAPAct i on HTTP header field value to be quoted increases
interoperability of implementations

. Even though HTTP allows for header field values to be unquoted, some implementations require that the value be quoted.

. The SOAPAct i on header is purely a hint to processors. All vital information regarding the intent of a message is carried in the
Envel ope

. R2744: A HTTP request MESSAGE MUST contain a SOAPAct i on HTTP header field with a quoted value equal to the value of the
soapAct i on attribute of soapbi nd: oper ati on, if present in the corresponding WSDL description.
R2745: A HTTP request MESSAGE MUST contain a SOAPAct i on HTTP header field with a quoted empty string value, if in the

file:///D|/workspace/wsd-guide/wsd-guide.html (120 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

corresponding WSDL description, the soapAct i on of soapbi nd: oper ati on is either not present, or present with an empty string
as its value.

SOAPAct i on Correct Usage. Example 1.

WSDL:

<soapbi nd: oper ati on soapAction="fo0" />

HTTP header field:

SQAPAct i on: "foo"

SOAPAct i on Correct Usage. Example 2.

WSDL:

<soapbi nd: operati on />

or

<soapbi nd: oper ati on soapAction="" />

HTTP header field:

SQAPAction: ""

Messaging: Use of SOAP in HTTP
Areas Clarified:

. ldentifying SOAP faults
. HTTP methods and extensions
. HTTP and TCP ports
HTTP success status codes
. HTTP redirect status codes
. HTTP server error status codes

Identifying SOAP Faults

. Background: Some consumer implementations use only the HTTP status code to determine the presence of a SOAP Fault. Because
there are situations where the Web infrastructure changes the HTTP status code, and for general reliability, the Profile requires
that they examine the envelope.

. R1107: A RECEIVER MUST interpret SOAP messages containing only a soap: Faul t element as a Faul t .

HTTP Methods and Extensions

. Background: The SOAP 1.1 specification defined its HTTP binding such that two possible methods could be used, the HTTP POST
method and the HTTP Extension Framework's M-POST method. The Profile requires that only the HTTP POST method be used and
precludes use of the HTTP Extension Framework.

. R1132 A HTTP request MESSAGE MUST use the HTTP POST method.

R1108 A MESSAGE MUST NOT use the HTTP Extension Framework

HTTP and TCP ports

. Background: SOAP is designed to take advantage of the HTTP infrastructure. However, there are some situations (e.g., involving
proxies, firewalls and other intermediaries) where there may be harmful side effects. As a result, instances may find it advisable
to use ports other than the default for HTTP (port 80).

. R1110 An INSTANCE MAY accept connections on TCP port 80 (HTTP).

file:///D|/workspace/wsd-guide/wsd-guide.html (121 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

HTTP Success Status Codes

. Background: HTTP uses the 2xx series of status codes to communicate success. In particular, 200 is the default for successful
messages, but 202 can be used to indicate that a message has been submitted for processing. Additionally, other 2xx status
codes may be appropriate, depending on the nature of the HTTP interaction.

. R1124 An INSTANCE MUST use a 2xx HTTP status code for responses that indicate a successful outcome of a request.

. R1111 An INSTANCE SHOULD use a "200 OK" HTTP status code for responses that contain a SOAP message that is not a SOAP
fault.

R1112 An INSTANCE SHOULD use either a "200 OK" or "202 Accepted" HTTP status code for a response that does not contain a
SOAP message but indicates successful HTTP outcome of a request.

HTTP Redirect Status Codes

Backgroud: There are interoperability problems with using many of the HTTP redirect status codes, generally surrounding whether
to use the original method, or GET
The Profile mandates "307 Temporary Redirect”, which has the semantic of redirection with the same HTTP method, as the correct
status code for redirection

. R1130 An INSTANCE MUST use HTTP status code "307 Temporary Redirect" when redirecting a request to a different endpoint.
R1131 A CONSUMER MAY automatically redirect a request when it encounters a "307 Temporary Redirect" HTTP status code in a
response.

HTTP Server Error Status Codes

. Background: HTTP uses the 5xx series of status codes to indicate failure due to a server error.
. R1126: An INSTANCE MUST use a "500 Internal Server Error" HTTP status code if the response message is a SOAP Fault.

Service Description: Document Structure
WSDL Schema Definitions

Background: The normative schemas for WSDL appearing in Appendix 4 of the WSDL 1.1 specification have inconsistencies with
the normative text of the specification. The Profile references new schema documents that have incorporated fixes for known
errors.

. Although the Profile requires WSDL descriptions to be Schema valid, it does not require consumers to validate WSDL documents.
It is the responsibility of a WSDL document's author to assure that it is Schema valid.
R2028 A DESCRIPTION using the WSDL namespace (prefixed "wsdl " in this Profile) MUST be valid according to the XML Schema
found at "htt p: // schemas. xm soap. or g/ wsdl / 2003- 02- 11. xsd".
R2029 A DESCRIPTION using the WSDL SOAP binding namespace (prefixed "soapbi nd" in this Profile) MUST be valid according to
the XML Schema found at "htt p: // schenas. xnl soap. or g/ wsdl / soap/ 2003- 02- 11. xsd".

Placement of WSDL i nport Element

R2022 When they appear in a DESCRIPTION, wsdl : i nport elements MUST precede all other elements from the WSDL namespace
except wsdl : docunent ati on.

. R2023 When they appear in a DESCRIPTION, wsdl : t ypes elements MUST precede all other elements from the WSDL namespace
except wsdl : docunent ati on and wsdl : i nport .

Correct Usage. Example 1.

<defi ni ti ons nane="St ockQuot e"
t ar get Namespace="htt p: // exanpl e. com st ockquot e/ defi ni ti ons" >

<i nport nanmespace="http://exanpl e. com st ockquot e/ base"
| ocati on="http://exanpl e. conl st ockquot e/ st ockquot e. wsdl "/ >

<nessage nane="Cet Last Tr adePri cel nput ">
<part nane="body" el ement="..."/>
</ message>

</definitions>

Correct Usage. Example 2.

<defini ti ons nanme="St ockQuot e"
xm ns="http://schemas. xm soap. or g/ wsdl /" >

<types>
<schenm t ar get Namespace="htt p: // exanpl e. conl st ockquot e/ schemas"

file:///D|/workspace/wsd-guide/wsd-guide.html (122 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

xm ns="http://ww. wW3. or g/ 2001/ XM_Schema" >

</ schema>
</types>

<message nane="Get Last TradePri cel nput">
<part nane="body" el ement="tns: TradePri ceRequest"/>
</ message>

<servi ce nane="StockQuot eServi ce">
<port nane="St ockQuot ePort" bi ndi ng="t ns: St ockQuot eSoap" >

</ port >
</ service>
</definitions>

WSDL Extensions

. Background: Requiring support for WSDL extensions that are not explicitly specified by this or another WS-I Profile can lead to
interoperability problems with development tools that have not been instrumented to understand those extensions

Service Description: Types
soapenc: Array

. Background: The recommendations in WSDL 1.1 Section 2.2 for declaration of array types have been interpreted in various ways,
leading to interoperability problems. Further, there are other clearer ways to declare arrays.

. R2110 In a DESCRIPTION, array declarations MUST NOT extend or restrict the soapenc: Array type.

. R2111 In a DESCRIPTION, array declarations MUST NOT use wsdl : arrayType attribute in the type declaration.

. R2112 In a DESCRIPTION, array declaration wrapper elements SHOULD NOT be named using the convention ArrayCOf XXX.

. R2113 A MESSAGE containing serialized arrays MUST NOT include the soapenc: arr ayType attribute.
Given the WSDL Description:

<xsd: el ement nanme="MArrayl" type="tns: MArraylType"/>

<xsd: conpl exType nanme="MArraylType">
<xsd: sequence>
<xsd: el ement name="x" type="xsd:string" m nOccurs="0"
maxQccur s="unbounded" / >
</ xsd: sequence>
</ xsd: conpl exType>

The SOAP message would serialize as (omitting namespace declarations for clarity):

<M/Arrayl>
<x>abcd</ x>
<x>ef gh</ x>
</ WArrayl>

Service Description: Messages
Binding and Parts

. Background: There are various interpretations about how many wsdl : part elements are permitted or required for docunent -
literal andrpc-literal bindings and how they must be defined.

. Use of wsdl : message elements with zero parts is permitted in Document styles to permit operations that can send or receive
messages with empty soap: Bodys. Use of wsdl : nessage elements with zero parts is permitted in RPC styles to permit operations
that have no (zero) parameters and/or a return value.

. For docunent-1literal bindings, the Profile requires that at most one part, abstractly defined with the el enent attribute, be
serialized into the soap: Body element.

. When awsdl : part element is defined using the t ype attribute, the wire representation of that part is equivalent to an implicit
(XML Schema) qualification of a mi nCccur s attribute with the value "1", a maxCccur s attribute with the value "1" and a nillable
attribute with the value "f al se".

Declaration of part elements

file:///D]/workspace/wsd-guide/wsd-guide.html (123 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

. Background: Examples 4 and 5 in WSDL 1.1 Section 3.1 incorrectly show the use of XML Schema types (e.g. "xsd: stri ng") as a
valid value for the el ement attribute of a wsdl : part element.

. R2206 A wsdl : message in a DESCRIPTION containing a wsdl : part that uses the el enent attribute MUST refer, in that attribute,
to a global element declaration.

Incorrect Usage Examples:

<nmessage nanme="Cet TradePri cel nput ">
<part name="ti cker Synbol " el enment =" xsd: string"/>
<part nane="tinme" el ement="xsd:tinelnstant"/>

</ nessage>

<message nane="Get TradePri cel nput ">
<part name="ti cker Synbol " el ement ="xsd: string"/>
</ nessage>

Correct Usage Example:

<nmessage nane="GCet TradePri cel nput ">
<part name="body" el ement="tns: Subscri beToQuot es"/>
</ nessage>

Service Description: PortTypes
Order of part elements

. Background: Permitting the use of par anet er Or der helps code generators in mapping between method signatures and messages

on the wire.

. R2301 The order of the elements in the soap: body of a MESSAGE MUST be the same as that of the wsdl : parts in the
wsdl : ressage that describes it.

. R2302 A DESCRIPTION MAY use the par anet er Or der attribute of an wsdl : oper ati on element to indicate the return value and
method signatures as a hint to code generators.

Service Description: Bindings
Use of SOAP Binding

Background: The Profile limits the choice of bindings to the well defined and most commonly used SOAP binding. MIME and HTTP
GET/POST bindings are not permitted by the Profile.
R2401 A wsdl : bi ndi ng element in a DESCRIPTION MUST use WSDL SOAP Binding as defined in WSDL 1.1 Section 3.

Service Description: SOAP Binding
HTTP Transport

. Background: The profile limits the underlying transport protocol to HTTP (HTTPS is allowed too).
. R2702 A wsdl : bi ndi ng element in a DESCRIPTION MUST specify the HTTP transport protocol with SOAP binding. Specifically, the
transport attribute of its soapbi nd: bi ndi ng child MUST have the value "htt p: // schenmas. xnl soap. or g/ soap/ htt p".

Consistency of styl e Attribute

. Background: The style, "docunent " or "r pc", of an interaction is specified at the wsdl : oper ati on level, permitting wsdl : bi ndi ngs
whose wsdl : oper at i ons have different st yl es. This has led to interoperability problems.
. R2705 A wsdl : bi ndi ng in a DESCRIPTION MUST use either be arpc-literal binding or a docunent-Iliteral binding.

Encodings and the use Attribute

Background: The Profile prohibits the use of encodings, including the SOAP encoding.
. R2706 A wsdl : bi ndi ng in a DESCRIPTION MUST use the value of "l i t er al " for the use attribute in all soapbi nd: body,
soapbi nd: faul t, soapbi nd: header and soapbi nd: header f aul t elements.

file:///D|/workspace/wsd-guide/wsd-guide.html (124 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Default for use Attribute

. Background: There is an inconsistency between the WSDL 1.1 specification and the WSDL 1.1 schema regarding whether the use
attribute is optional on soapbi nd: body, soapbi nd: header, and soapbi nd: header f aul t , and if so, what omitting the attribute
means.

. R2707 A wsdl : bi ndi ng in a DESCRIPTION that contains one or more soapbi nd: body, soapbi nd: f aul t, soapbi nd: header or
soapbi nd: header f aul t elements that do not specify the use attribute MUST be interpreted as though the value "l'i teral " had
been specified in each case.

Child Element for Document-Literal Bindings

. Background: WSDL 1.1 is not completely clear what, in docunent -l i t eral style bindings, the child element of soap: Body is.
. R2712 A docunent -l iteral binding MUST be represented on the wire as a MESSAGE with a soap: Body whose child element is an
instance of the global element declaration referenced by the corresponding wsdl : mnessage part.

One-way Operations

. Background: There are differing interpretations of how HTTP is to be used when performing one-way operations.

. One-way operations do not produce SOAP responses. Therefore, the Profile prohibits sending a SOAP envelope in response to a
one-way operation. This means that transmission of one-way operations can not result in processing level responses or errors. For
example, a "500 Internal Server Error" HTTP response that includes a SOAP message containing a SOAP Fault element can not be
returned.

. The HTTP response to a one-way operation indicates the success or failure of the transmission of the message. Based on the
semantics of the different response status codes supported by the HTTP protocol, the Profile specifies that "200" and "202" are the
preferred status codes that the sender should expect, signifying that the one-way message was received. A successful
transmission does not indicate that the SOAP processing layer and the application logic has had a chance to validate the message
or have committed to processing it.

. Despite the fact that the HTTP 1.1 assigns different meanings to response status codes "200" and "202", in the context of the
Profile they should be considered equivalent by the initiator of the request. The Profile accepts both status codes because some
SOAP implementations have little control over the HTTP protocol implementation and cannot control which of these response
status codes is sent.

R2714 For one-way operations, an INSTANCE MUST NOT return a HTTP response that contains a SOAP envelope. Specifically, the
HTTP response entity-body must be empty.

. R2750 A CONSUMER MUST ignore a SOAP response carried in a response from a one-way operation.

. R2727 For one-way operations, a CONSUMER MUST NOT interpret a successful HTTP response status code (i.e., 2xx) to mean the
message is valid or that the receiver would process it.

Service Description: Use of XML Schema
Use of XML Schema

Background: WSDL 1.1 uses XML Schema as one of its type systems. The Profile mandates the use of XML Schema as the type
system for WSDL descriptions of Web Services.

. R2800 A DESCRIPTION MAY use any construct from XML Schema 1.0.

. R2801 A DESCRIPTION MUST use XML Schema 1.0 Recommendation as the basis of user defined datatypes and structures.

Chapter 8. Security

Explain basic security mechanisms including: transport level security, such as basic and mutual authentication and
SSL, message level security, XML encryption, XML Digital Signature, and federated identity and trust.

There are two ways with which we can ensure security with Web Services. They are:

1. Security at Transport level
2. Security at XML level

Security at Transport level

Transport level security is based on Secure Sockets Layer (SSL) or Transport Layer Security (TLS) that runs beneath HTTP. SSL and TLS
provide security features including authentication, data protection, and cryptographic token support for secure HTTP connections. To run
with HTTPS, the service endpoint address must be in the form htt ps: //. The integrity and confidentiality of transport data, including
SOAP messages and HTTP basic authentication, is confirmed when you use SSL and TLS. Web services applications can also use Federal
Information Processing Standard (FIPS) approved ciphers for more secure TLS connections.

Implementing security at the transport level means, securing the network protocol, a Web Service uses for communication. SSL is the
Industry accepted standard protocol for secured encrypted communications over TCP/IP. In this model, a Web Service client will use SSL
to open a secure socket to a Web Service. The client then sends and receives SOAP messages over this secured socket using HTTPS. The
SSL implementation takes care of ensuring privacy by encrypting all the network traffic on the socket. SSL can also authenticate the
Web Service to the client using the PKI infrastructure.

HTTPS provides encryption, which ensures privacy and message integrity. HTTPS also authenticates through the use of certificates,
which can be used on the server side, the client side, or both. HTTPS with server-side certificates is the most common configuration on
the Web today. In this configuration, clients can authenticate servers, but servers cannot authenticate clients. However, HTTPS can also
be used in conjunction with basic or digest authentication, which provides a weaker form of authentication for clients.

file:///ID|/workspace/wsd-guide/wsd-guide.html (125 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

HTTP basic authentication uses a user name and password to authenticate a service client to a secure endpoint. A simple way to provide
authentication data for the service client is to authenticate to the protected service endpoint to the HTTP basic authentication. The basic
authentication is located in the HTTP header that carries the SOAP request. When the application server receives the HTTP request, the
user name and password are retrieved and verified using the authentication mechanism specific to the server. Although the basic
authentication data is base64-encoded, sending data over HTTPS is recommended. The integrity and confidentiality of the data can be
protected by the Secure Sockets Layer (SSL) protocol.

Security at XML level
There are some standards available for securing Web Services at XML level. They are:
XML Encryption

The W3C is coordinating XML Encryption. Its goal is to develop XML syntax for representing encrypted data and to establish
procedures for encrypting and decrypting such data. Unlike SSL, with XML Encryption, you can encrypt only the data that needs to
be encrypted, for example, only the credit card information in a purchase order XML document:

<pur chaseOr der >
<nane>M kal ai Zai ki n</ nanme>
<address> ... </address>

<Encrypt edDat a Type='htt p://ww. w3. or g/ 2001/ 04/ xm enc#El enent '
xm ns=' http://ww. w3. or g/ 2000/ 11/ t enp- xm enc' >
<Encrypti onMet hod Al gorithm="urn: ni st-gov:tripl edes-ede-chc">
<s0: someMet hod xm ns: sO=' http://somens' >ABCD</ s0: soneMet hod>
</ Encrypti onMet hod>
<Keyl nf o xm ns=' http://wwmw. w3. or g/ 2000/ 09/ xml dsi g#' >
<KeyNane>Shar edKey</ Key Nanme>
</ Keyl nf 0>
<C pher Dat a>
<Ci pher Val ue>A23B45C564562347e23e</ C pher Val ue>
</ C pher Dat a>
</ Encr ypt edDat a>

<pr odNunber >8a32gh19908</ pr odNunber >
<quantity>1</quantity>
</ pur chaseCOr der >

The <EncryptedData> element is the core
element in the syntax. Mot only does its
<CipherData> child contain the encrypted
data, but it's also the element that replaces
the encrypted element, or serves as the news

<EncryptedData Id? Type? MimeType? Encoding?> / document root.

<EncryptionMethod/>?

<ds:KeyInfo> éﬁ_‘*—‘_. <EncryptionMethod> is an optional element
<EncryptedKey>? that describes the encryption algorithm
<AgreementMethod>? applied to the cipher data. If the element is
<ds:KevName=? absent, the encryption algorithm must be

ey) ’ known by the recipient or the decryption will

<ds:RefrievalMethod>"? fail.
<ds:*>7?

: ?
=:,fc_is.Key[nfo:= ' The <CipherData> is @ mandatory element that L
<CipherData>

! provides the encrypted data. It must either
<CipherValues? \ contain the encrypted octet sequence as
<:C|'pherReferen ce URI?="7? baset4 encoded text of the <Ciphervalue=

</CipherData> element, or provide a reference to an external

: - : lacation containing the encrypted octet
< >7
EncryptionProperties sequence via the <CipherReference> element.
</EncryptedData>

In XML Encryption, your plaintext is either an element or that element's content (that's the finest granularity you get—you can't
encrypt, say, half an element's content). After encryption, you get an XML element called Encr ypt edDat a, containing the
ciphertext in Base64-encoded format. That Encr ypt edDat a element replaces your plaintext. That is, if you encrypt element bar in
this snippet below:

file:///D|/workspace/wsd-guide/wsd-guide.html (126 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

you'll get back something like this:

Whereas if you encrypt element bar 's content, the result will look similar to this:

Note the difference between the Type attributes in the two examples. From looking at this attribute, we can tell immediately
whether the plaintext is an element of just its content.

Encrypt edDat a is shown below. In this structure "?" denotes zero or one occurrence; "+" denotes one or more occurrences; "*"
denotes zero or more occurrences; and the empty element tag means the element must be empty:

Encr ypt edDat a's most important element, G pher Dat a, either directly contains the ciphertext in C pher Val ue, or, if

Ci pher Ref er ence is used, a reference to it. The other elements are optional because usually the receiving party already has the
information they contain. For instance, Encr ypti onMet hod lets you specify the algorithm and key size, but usually you and the
other party will agree on those beforehand. The same goes for Keyl nf o: it gives you the flexibility to give the other party the
material to decrypt your message, but you'd probably want to sent it through some out-of-band mechanism.

Encrypti onProperties serves as another optional element used for, optional information, such as a date/time stamp.

Consider the following fictitious payment information, which includes identification information and information appropriate to a
payment method (e.g., credit card, money transfer, or electronic check):

file:///D|/workspace/wsd-guide/wsd-guide.html (127 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Credit card number is sensitive information. If the application wishes to keep that information confidential, it can encrypt the
Credit Card element:

By encrypting the entire Cr edi t Car d element from its start to end tags, the identity of the element itself is hidden. The
Ci pher Dat a element contains the encrypted serialization of the Credi t Card element.

Encrypting XML Element Content (Elements)

As an alternative scenario, it may be useful for intermediate agents to know that John used a credit card with a particular limit,
but not the card's number, issuer, and expiration date. In this case, the content (character data or children elements) of the
Credi t Card element is encrypted:

Encrypting XML Element Content (Character Data)

We can consider the scenario in which all the information except the actual credit card number can be in the clear, including the
fact that the Nunber element exists:

file:///D|/workspace/wsd-guide/wsd-guide.html (128 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Both Credi t Card and Nunber are in the clear, but the character data content of Nunber is encrypted.
Encrypting Arbitrary Data and XML Documents

If the application scenario requires all of the information to be encrypted, the whole document is encrypted as an octet sequence.
This applies to arbitrary data including XML documents:

<?xm version="1.0"?>
<Encrypt edData xm ns=' http://ww. w3. or g/ 2001/ 04/ xm enc# M neType='text/xm "' >
<Ci pher Dat a>
<C pher Val ue>A23B45C56</ Ci pher Val ue>
</ C pher Dat a>
</ Encr ypt edDat a>

Super-Encryption: Encrypting Encr ypt edDat a

An XML document may contain zero or more Encr ypt edDat a elements. Encr ypt edDat a cannot be the parent or child of another
Encr ypt edDat a element. However, the actual data encrypted can be anything, including Encr ypt edDat a and Encr ypt edKey
elements (i.e., super-encryption). During super-encryption of an Encr ypt edDat a or Encr ypt edKey element, one must encrypt the
entire element. Encrypting only the content of these elements, or encrypting selected child elements is an invalid instance under
the provided schema. For example, consider the following:

<pay: Payment I nfo xm ns: pay="'http://exanpl e. or g/ paynment v2' >
<EncryptedData |d="ED1' xm ns='http://ww.w3. org/ 2001/ 04/ xm enc#'
Type=' http://wwmv. W3. or g/ 2001/ 04/ xm enc#El enent ' >
<C pher Dat a>
<Ci pher Val ue>ori gi nal Encr ypt edDat a</ Ci pher Val ue>
</ C pher Dat a>
</ Encr ypt edDat a>
</ pay: Paynent | nf o>

A valid super-encryption of "/ / xenc: Encr ypt edDat a[@ d=" ED1'] " would be:

<pay: Payment I nfo xm ns: pay='http://exanpl e. or g/ paynent v2' >
<EncryptedData |d=" ED2' xm ns='http://wwmv. w3. org/ 2001/ 04/ xm enc#'
Type=' http://ww. w3. or g/ 2001/ 04/ xm enc#El ement ' >
<C pher Dat a>
<Ci pher Val ue>newEncr ypt edDat a</ Ci pher Val ue>
</ C pher Dat a>
</ Encr ypt edDat a>
</ pay: Paynent | nf o>

where the G pher Val ue content of 'newEncr ypt edDat a' is the base64 encoding of the encrypted octet sequence resulting from
encrypting the Encrypt edDat a element with | d=" ED1' .

XML Digital Signature

XML Digital Signature, like any other digital signing technology, provides authentication, data integrity (tamper-proofing), and
nonrepudiation. Of all the XML-based security initiatives, the XML digital signature effort is the furthest along. The W3C (World
Wide Web Consortium) and the IETF (Internet Engineering Task Force) jointly coordinate this effort. The project aims to develop
XML syntax for representing digital signatures over any data type. The XML digital signature specification also defines procedures
for computing and verifying such signatures. Another important area that XML digital signature addresses is the canonicalization
of XML documents. Canonicalization enables the generation of the identical message digest and thus identical digital signatures for
XML documents that are syntactically equivalent but different in appearance due to, for example, a different number of white
spaces present in the documents. So why XML Digital Signature? XML Digital Signature provides a flexible means of signing and
supports diverse sets of Internet transaction models. For example, you can sign individual items or multiple items of an XML
document. The document you sign can be local or even a remote object, as long as those objects can be referenced through a URI
(Uniform Resource Identifier). You can sign not only XML data, but also non-XML data. A signature can be either enveloped or
enveloping, which means the signature can be either embedded in a document being signed or reside outside the document. XML
digital signature also allows multiple signing levels for the same content, thus allowing flexible signing semantics. For example,
the same content can be semantically signed, cosigned, witnessed, and notarized by different people.

file:///D|/workspace/wsd-guide/wsd-guide.html (129 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

The XML signature specification is an extremely flexible tool for generating digitally signed XML documents. It supports signing
complete XML documents, parts of XML documents and even non-XML documents. The resulting signature is a well-formed XML
fragment that can either be used on its own (a standalone XML document) or embedded within a more complex XML document.

Each resource to be signed has its own <Reference>
element identified by URI attribute

<5Signature ID?>

<SignedInfo> <Transforms> element specifies an ordered list of
9 p
<CanonicalizationMethod/> processing steps that were applied to the referenced
<SignatureMethod/ > resource's content before it was digested
(<Reference URI? =
(<Transforms=>)?
<DigestMethod> <DigestValue> element carries
<DigestValue> e | thevalue of the digest of the
</Reference>)+ referenced resources
</SignedInfo>
<SignatureValue> <SignatureValue> element
(<KeyInfo=)? ex carries the value of encrypted
(<Object ID?>)* digest of the <SignedInfo>
. ' I t
</Signature> elemen

<KeyInfo> element indicates the
key to be used to validate the
signature. Possible forms for
identification include: certificates,
key names, key agreement
algorithms and information

XML Signature Forms:
1. Enveloped

An enveloped signature is useful when you have a simple XML document which you to guarantee the integrity of. For
example, XKMS messages can use enveloped signatures to convey "trustable" answers from a server back to a client.

The signature is over the XML content that contains the signature as an element. The content provides the root XML
document element. Obviously, enveloped signatures must take care not to include their own value in the calculation of the
Si gnat ur eVal ue.

Si gnat ur e is enveloped within the content been signed:

<doc | d="nylD'>
<nyEl enent >

</ nyEl enent >
<Si gnat ur e>

<Ref erence URI ="#nyl| D'/ >

</ Si gnat ur e>
</ doc>

2. Enveloping

An enveloping signature is useful when the signing facility wants to add its own metadata (such as a timestamp) to a
signature - it doesn't have to modify the source document, but can include additional data covered by the signature within
the signature document it generates. (An XML Digital Signature can sign multiple objects at once, so enveloping is usually
combined with another format).

The signature is over content found within an Obj ect element of the signature itself. The Obj ect (or its content) is
identified via a Ref er ence (via a URI fragment identifier or transform).

file:///ID|/workspace/wsd-guide/wsd-guide.html (130 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Si gnat ur e envelopes the contents to be signed:

3. Detached

A detached signature is useful when you can't modify the source; the downside is that it requires two XML documents - the
source and its signature - to be carried together. In other words, it requires a packaging format - enter SOAP headers.

The signature is over content external to the Si gnat ur e element, and can be identified via a URI or transform.
Consequently, the signature is "detached" from the content it signs. This definition typically applies to separate data
objects, but it also includes the instance where the Si gnat ur e and data object reside within the same XML document but
are SIBLING elements.

Si gnat ur e is external to the content that is signed:

XML Signatures are applied to arbitrary digital content (data objects) via an indirection. Data objects are digested, the resulting
value is placed in an element (with other information) and that element is then digested and cryptographically signed. XML digital
signatures are represented by the Si gnat ur e element which has the following structure (where "?" denotes zero or one
occurrence; "+" denotes one or more occurrences; and "*" denotes zero or more occurrences):

Signatures are related to data objects via URIs. Within an XML document, signatures are related to local data objects via fragment
identifiers. Such local data can be included within an enveloping signature or can enclose an enveloped signature. Detached
signatures are over external network resources or local data objects that reside within the same XML document as sibling
elements; in this case, the signature is neither enveloping (signature is parent) nor enveloped (signature is child). Since a

Si gnat ur e element (and its | d attribute value/name) may co-exist or be combined with other elements (and their IDs) within a
single XML document, care should be taken in choosing names such that there are no subsequent collisions that violate the ID
uniqueness validity constraint.

file:///D|/workspace/wsd-guide/wsd-guide.html (131 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Simple example:

<Si gnature |d="MFirstSignature" xm ns="http://ww.w3. org/ 2000/ 09/ xm dsi g#" >
<Si gnedI nf 0>
<Canoni cal i zati onMet hod Al gorithm="http://ww. w3. or g/ TR/ 2001/ REC- xml - c14n- 20010315"/ >
<Si gnat ur eMet hod Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#dsa- shal"/ >
<Reference URI ="http://ww. w3. or g/ TR/ 2000/ REC- xht m 1- 20000126/ " >
<Tr ansf or ms>
<Transform Al gorithm="http://ww. w3. or g/ TR/ 2001/ REC- xnl - c14n- 20010315"/ >
</ Tr ansf or n8>
<Di gest Met hod Al gorithm="htt p://ww. w3. or g/ 2000/ 09/ xni dsi g#shal"/ >
<Di gest Val ue>j 61 wx3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>
</ Ref erence>
</ Si gnedl nf o>

<Si gnat ur eVal ue>M20CFFr VLt Rl k=. . . </ Si gnat ur eVal ue>

<Key! nf 0>
<KeyVal ue>
<DSAKeyVal ue>
<P>. .. </P><@. .. </ QP<C. .. </ <Y>. .. </ Y>
</ DSAKeyVal ue>
</ KeyVal ue>
</ Keyl nf o>
</ Si gnat ur e>

The required Si gnedl nf o element is the information that is actually signed. Core validation of Si gnedl nf o consists of two
mandatory processes: validation of the signature over Si gnedl nf o and validation of each Ref er ence digest within Si gnedl nf o.
Note that the algorithms used in calculating the Si gnat ur eVal ue are also included in the signed information while the

Si gnat ur eVal ue element is outside Si gnedl nf o.

The Canoni cal i zat i onMet hod is the algorithm that is used to canonicalize the Si gnedl nf o element before it is digested as part of
the signature operation. Note that this example is not in canonical form.

The Si gnat ur eMet hod is the algorithm that is used to convert the canonicalized Si gnedl nf o into the Si gnat ureVal ue. Itis a
combination of a digest algorithm and a key dependent algorithm and possibly other algorithms such as padding, for example RSA-
SHA1. The algorithm names are signed to resist attacks based on substituting a weaker algorithm. To promote application
interoperability we specify a set of signature algorithms that MUST be implemented, though their use is at the discretion of the
signature creator. We specify additional algorithms as RECOMMENDED or OPTIONAL for implementation; the design also permits
arbitrary user specified algorithms.

Each Ref er ence element includes the digest method and resulting digest value calculated over the identified data object. It also
may include transformations that produced the input to the digest operation. A data object is signed by computing its digest value
and a signature over that value. The signature is later checked via reference and signature validation.

Keyl nf o indicates the key to be used to validate the signature. Possible forms for identification include certificates, key names,
and key agreement algorithms and information - we define only a few. Keyl nf o is optional for two reasons. First, the signer may
not wish to reveal key information to all document processing parties. Second, the information may be known within the
application's context and need not be represented explicitly. Since Keyl nf o is outside of Si gnedl nf o, if the signer wishes to bind
the keying information to the signature, a Ref er ence can easily identify and include the Keyl nf o as part of the signature.

How to Create an XML Signature:
1. Determine which resources are to be signed.
This will take the form of identifying the resources through a Uniform Resource Identifier (URI).

"http://ww. abcconpany. conti ndex. ht M " - would reference an HTML page on the Web

"http://ww. abcconpany. coni | ogo. gi f" - would reference a GIF image on the Web

"http://ww. abcconpany. com’ xm / po. xml " - would reference an XML file on the Web

"http://ww. abcconpany. com xm / po. xm #sender 1" - would reference a specific element in an XML file on the
Web

o o o o

2. Calculate the digest of each resource.

In XML signatures, each referenced resource is specified through a Ref er ence element and its digest (calculated on the
identified resource and not the Filename>Reference element itself) is placed in a Di gest Val ue child element like:

file:///D|/workspace/wsd-guide/wsd-guide.html (132 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<Reference URI ="htt p://ww. abcconpany. comf news/ 2000/ 03_27_00. ht ni' >
<Di gest Met hod Al gorithm="http://ww. w3. or g/ 2000/ 09/ xni dsi g#shal" />
<Di gest Val ue>j 61 wx3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>

</ Ref er ence>

<Ref erence URI ="http://wwmv. w3. or g/ TR/ 2000/ WD- xni dsi g- cor e- 20000228/ si gnat ur e- exanpl e. xm ">
<Di gest Met hod Al gorithn="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
<Di gest Val ue>Ur XLDLBI t a6skoV5/ A8(B8GEWA4=</ Di gest Val ue>

</ Ref erence>

The Di gest Met hod element identifies the algorithm used to calculate the digest.
3. Collect the Ref er ence elements

Collect the Ref er ence elements (with their associated digests) within a Si gned! nf o element like:

<Si gnedl nfo | d="f oobar" >
<Canoni cal i zati onMet hod Al gorithn="http://ww. w3. or g/ TR/ 2001/ REC- xml - c14n- 20010315"/ >
<Si gnat ur eMet hod Al gorithnme"http://ww. w3. or g/ 2000/ 09/ xml dsi g#dsa- shal" />

<Ref erence URI ="http://ww:. abcconpany. conf news/ 2000/ 03_27_00. ht ni' >
<Di gest Met hod Al gorithm="htt p://ww. w3. or g/ 2000/ 09/ xm dsi g#shal" />
<Di gest Val ue>j 61 wx3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>

</ Ref erence>

<Reference URI ="http://ww. w3. or g/ TR/ 2000/ WD- xni dsi g- cor e- 20000228/ si gnat ur e-
exanpl e. xm ">
<Di gest Met hod Al gorithne"http://ww. wW3. or g/ 2000/ 09/ xn dsi g#shal"/ >
<Di gest Val ue>Ur XLDLBI t a6skoV5/ ABQB8GEW44=</ Di gest Val ue>
</ Ref er ence>
</ Si gnedI nf o>

The Canoni cal i zat i onMet hod element indicates the algorithm was used to canonize the Si gnedl nf o element. Different
data streams with the same XML information set may have different textual representations, e.g. differing as to whitespace.
To help prevent inaccurate verification results, XML information sets must first be canonized before extracting their bit
representation for signature processing. The Si gnat ur eMet hod element identifies the algorithm used to produce the
signature value.

4. Signing

Calculate the digest of the Si gnedl nf o element, sign that digest and put the signature value in a Si gnat ur eVal ue element:

<Si gnat ur eVal ue>M20CFFr VLt Rl k=. . . </ Si gnat ur eVal ue>

5. Add key information

If keying information is to be included, place it in a Keyl nf o element. Here the keying information contains the X.509
certificate for the sender, which would include the public key needed for signature verification:

<Key! nf 0>
<X509Dat a>
<X509Subj ect Name>CN=Ed Si non, O=XM_Sec | nc., ST=OTTAWA, C=CA</ X509Subj ect Nane>
<X509Certi ficat e>M | D5j CCAO+gA. . . | VN</ X509Certifi cat e>
</ X509Dat a>
</ Keyl nf o>

6. Enclose in a Si gnat ur e element

Place the Si gnedl nf o, Si gnat ur eVal ue, and Keyl nf o elements into a Si gnat ur e element. The Si gnat ur e element
comprises the XML signature:

file:///D|/workspace/wsd-guide/wsd-guide.html (133 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<?xm version="1.0" encodi ng="UTF-8"?>
<Si gnature xm ns="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<Si gnedl nfo |d="foobar">
<Canoni cal i zat i onMet hod Al gorithn¥"http://ww. w3. or g/ TR/ 2001/ REC- xni - c14n- 20010315"/ >
<Si gnat ur eMet hod Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#dsa- shal" />

<Ref erence URI ="http://ww. abcconpany. conl news/ 2000/ 03_27_00. ht ni' >
<Di gest Met hod Al gorithn="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal" />
<Di gest Val ue>j 61 wx3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>

</ Ref erence>

<Ref erence URI ="http://ww. w3. or g/ TR/ 2000/ WD- xrl dsi g- cor e- 20000228/ si gnat ur e-
exanpl e. xm ">
<Di gest Met hod Al gorithnm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
<Di gest Val ue>Ur XLDLBI t a6skoV5/ AB(B8CGEWA4=</ Di gest Val ue>
</ Ref er ence>

</ Si gnedl nf o>
<Si gnat ur eVal ue>MOE~LE=</ Si gnat ur eVal ue>

<Keyl nf o>
<X509Dat a>
<X509Subj ect Name>CN=Ed Si non, O=XM_Sec | nc., ST=OTTAWA, C=CA</ X509Subj ect Nane>
<X509Certi ficate>
M | D5j CCAO+gA. . . | VN
</ X509Certi ficate>
</ X509Dat a>
</ Keyl nf o>

</ Si gnat ur e>

Verifying an XML Signature.
A brief description of how to verify an XML signature:

1. Verify the signature of the Si gnedl nf o element. To do so, recalculate the digest of the Si gnedl nf o element (using the
digest algorithm specified in the Si gnat ur eMet hod element) and use the public verification key to verify that the value of
the Si gnat ur eVal ue element is correct for the digest of the Si gnedl nf o element.

2. If this step passes, recalculate the digests of the references contained within the Si gnedl nf o element and compare them to
the digest values expressed in each Ref er ence element's corresponding Di gest Val ue element.

. XKMS (XML Key Management Specification)

[see next section]
. SAML (Security Assertion Markup Language)

[see next section]
Federated identity and trust
There are two possible identity management architectures, one based on a centralized model and the other, on a federated model.

In the centralized model, a single operator performs authentication and authorization by owning and controlling all the identity
information. In the federated model, both authentication and authorization tasks are distributed among federated communities. One
advantage of the centralized model is that, because a single operator owns and controls everything, constructing and managing the
identity network could be easier than with the federated model. However, the centralized model has serious downsides. The most
serious one is the dangerous potential for the single operator becoming a tollgate for all transactions over the Internet. For example, the
operator might charge a fee for every transaction you make. You might have to pay a few cents or dollars whenever you perform a
transaction on eBay. The centralized model has another serious problem: the single operator could represent a single point of security
failure or hacker attack. One more reason why the centralized model has not garnered any support, especially from the business
community, is because a single operator can take away the most important business asset—that is, customer identity and profile
information—from an organization. That results in a serious threat to businesses such as banks and brokerage houses whose success
depends on their customer information. This information represents one of the most critical assets to a business, one it is not willing to
give up to a third party. The federated model, driven by the Liberty Alliance Project, is designed to correct the centralized model's
problems. The goal of the Liberty Alliance Project is to create an open standard for identity, authentication, and authorization, which will
lower e-commerce costs and accelerate organizations' commercial opportunities, while at the same time increasing customer
satisfaction. In a Liberty architecture, organizations can maintain their own customer/employee data while sharing identity data with
partners based on their business objectives and customer preferences.

In the federated identity management architecture scheme, three roles could exist. The first is the role of a consumer. As a consumer,
you can have multiple identity profiles, and you can ask different identity providers to maintain these profiles. For example, you might

file:///D|/workspace/wsd-guide/wsd-guide.html (134 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

want your HMO to manage your healthcare profile and your brokerage house to maintain your brokerage profile. In fact, as a consumer,
you can pick and choose which identity provider to maintain your profile based on price, credibility, service, and so on. In this model,
consumers have a final say in terms of who can access what information. Consumers can be a person, a business, or a software entity.
In this case, the HMO and brokerage house play the role of identity provider. Identity providers maintain user profile information and
can interoperate among themselves as long as they have permission to do so from the profile's owner, the consumer. Identity providers
are expected to compete for your business in the future in the same way HMOs, banks, and brokerage houses compete for your business
today. The third role is that of the service provider, the merchant who has services to offer consumers. Service providers can customize
their services to each consumer by retrieving relevant identity profiles from the identity providers. For example, your travel agent might
discover your travel and dining preferences from the identity provider you designated to maintain your travel preference.

In the phase with no federation (separate login for each site), a consumer must log in separately to each site. This phase will then
evolve into an environment where multiple identity networks exist. Within a single identity network, single sign-on can be achieved.
However, no network-to-network identity propagation is available at this stage. Eventually, these individually constructed and operating
identity networks will work together by exchanging their consumers' identity information, thus providing a truly seamless, global-scale
identity network, the Liberty Alliance Project's ultimate goal.

The ATM network serves as an analogy for the federated network. Initially, individual banks issued their own ATM cards, and different
banks did not interoperate. At this stage, you could not use your ATM card in an ATM machine owned and operated by another bank.
These days, you can use your credit card or ATM card in any ATM machine, as long as the bank that owns the machine and your bank
are members of the same affiliation network. In the not too distant future, it is not a stretch to think about a single global network to
which all banks directly or indirectly belong. The identity network should evolve similarly. One possible challenge of the federated
identity network model is that because there are many parties involved, the standard has to be defined in an unambiguous manner. The
Liberty Alliance Project addresses that challenge.

Federated ldentity allows users to link identity information between accounts without centrally storing personal information. Also, the
user can control when and how their accounts and attributes are linked and shared between domains and Service Providers, allowing for
greater control over their personal data. In practice, this means that users can be authenticated by one company or website and be
recognized and delivered personalized content and services in other locations without having to re-authenticate or sign on with a
separate username and password.

"Circle of Trust"” is enabled through federated identity and is defined as a group of service providers that share linked identities and have
pertinent business agreements in place regarding how to do business and interact with identities. Once a user has been authenticated by
a Circle of Trust identity provider, that individual can be easily recognized and take part in targeted services from other service providers
within that Circle of Trust. It should be noted that this concept of trust-based relationships between organizations and their individual or
joint customers has existed in the offline business world for years; two common examples would include travel alliances and affiliate
business partnerships.

Identify the purpose and benefits of Web services security oriented initiatives and standards such as Username
Token Profile, SAML, XACML, XKMS, WS-Security, and the Liberty Project.

SAML

Security Assertions Markup Language effort, or SAML, which is being defined by the OASIS (Organization for the Advancement of
Structured Information) security services technical committee. The committee aims to outline a standard XML framework for exchanging
authentication and authorization information. In a nutshell, SAML is an XML-based framework for exchanging security information. As a
framework, it deals with three things. First, it defines syntax and semantics of XML-encoded assertion messages. Second, it defines
request and response protocols between requesting and asserting parties for exchanging security information. Third, it defines rules for
using assertions with standard transport and message frameworks. For example, it defines how SAML assertion messages can transport
using SOAP over HTTP.

The security information for exchanging is expressed in the form of assertions about subjects, where a subject is an entity (either human
or computer) that has an identity in some security domain. A typical example of a subject is a person, identified by his or her email
address in a particular Internet DNS domain.

Assertions can convey information about authentication acts performed by subjects, attributes of subjects, and authorization decisions
about whether subjects are allowed to access certain resources. Assertions are represented as XML constructs and have a nested
structure, whereby a single assertion might contain several different internal statements about authentication, authorization, and
attributes. Note that assertions containing authentication statements merely describe acts of authentication that happened previously.

Assertions are issued by SAML authorities, namely, authentication authorities, attribute authorities, and policy decision points. SAML
defines a protocol by which clients can request assertions from SAML authorities and get a response from them. This protocol, consisting
of XML-based request and response message formats, can be bound to many different underlying communications and transport
protocols; SAML currently defines one binding, to SOAP over HTTP.

SAML authorities can use various sources of information, such as external policy stores and assertions that were received as input in
requests, in creating their responses. Thus, while clients always consume assertions, SAML authorities can be both producers and
consumers of assertions.

One major design goal for SAML is Single Sign-On (SSO), the ability of a user to authenticate in one domain and use resources in other
domains without re-authenticating. However, SAML can be used in various configurations to support additional scenarios as well. Several
profiles of SAML are currently being defined that support different styles of SSO and the securing of SOAP payloads.

XACML

XACML stands for Extensible Access Control Markup Language, and its primary goal is to standardize access control language in XML
syntax. A standard access control language results in lower costs because there is no need to develop an application-specific access

file:///D|/workspace/wsd-guide/wsd-guide.html (135 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

control language or write the access control policy in multiple languages. Plus, system administrators need to understand only one
language. With XACML, it is also possible to compose access control policies from the ones created by different parties.

In a nutshell, XACML is a general-purpose access control policy language. This means that it provides a syntax (defined in XML) for
managing access to resources.

XACML is an OASIS standard that describes both a policy language and an access control decision request/response language (both
written in XML). The policy language is used to describe general access control requirements, and has standard extension points for
defining new functions, data types, combining logic, etc. The request/response language lets you form a query to ask whether or not a
given action should be allowed, and interpret the result. The response always includes an answer about whether the request should be
allowed using one of four values: Permit, Deny, Indeterminate (an error occurred or some required value was missing, so a decision
cannot be made) or Not Applicable (the request can't be answered by this service).

The typical setup is that someone wants to take some action on a resource. They will make a request to whatever actually protects that
resource (like a filesystem or a web server), which is called a Policy Enforcement Point (PEP). The PEP will form a request based on the
requester's attributes, the resource in question, the action, and other information pertaining to the request. The PEP will then send this
request to a Policy Decision Point (PDP), which will look at the request and some policy that applies to the request, and come up with an
answer about whether access should be granted. That answer is returned to the PEP, which can then allow or deny access to the
requester. Note that the PEP and PDP might both be contained within a single application, or might be distributed across several servers.
In addition to providing request/response and policy languages, XACML also provides the other pieces of this relationship, namely finding
a policy that applies to a given request and evaluating the request against that policy to come up with a yes or no answer.

There are many existing proprietary and application-specific languages for doing this kind of thing but XACML has several points in its
favor:

. It's standard. By using a standard language, you're using something that has been reviewed by a large community of experts and
users, you don't need to roll your own system each time, and you don't need to think about all the tricky issues involved in
designing a new language. Plus, as XACML becomes more widely deployed, it will be easier to interoperate with other applications
using the same standard language.

. It's generic. This means that rather than trying to provide access control for a particular environment or a specific kind of
resource, it can be used in any environment. One policy can be written which can then be used by many different kinds of
applications, and when one common language is used, policy management becomes much easier.

. It's distributed. This means that a policy can be written which in turn refers to other policies kept in arbitrary locations. The result
is that rather than having to manage a single monolithic policy, different people or groups can manage sub-pieces of policies as
appropriate, and XACML knows how to correctly combine the results from these different policies into one decision.

. It's powerful. While there are many ways the base language can be extended, many environments will not need to do so. The
standard language already supports a wide variety of data types, functions, and rules about combining the results of different
policies. In addition to this, there are already standards groups working on extensions and profiles that will hook XACML into other
standards like SAML and LDAP, which will increase the number of ways that XACML can be used.

Every enterprise has a need to secure resources accessed by employees, partners, and customers. For example, browser based access
to portals which aggregate resources (web pages, applications, services, etc.) are typical in today's enterprises. Clients send requests to
servers for resources, but before a server can return that resource it must determine if the requester is authorized to use the resource.
This is where XACML fits in. XACML provides a policy language which allows administrators to define the access control requirements for
their application resources. The language and schema support include data types, functions, and combining logic which allow complex
(or simple) rules to be defined. XACML also includes an access decision language used to represent the runtime request for a resource.
When a policy is located which protects a resource, functions compare attributes in the request against attributes contained in the policy
rules ultimately yielding a permit or deny decision.

When a client makes a resource request upon a server, the entity charged with access control by enforcing authorization is called the
Policy Enforcement Point. In order to enforce policy, this entity will formalize attributes describing the requester at the Policy Information
Point and delegate the authorization decision to the Policy Decision Point. Applicable policies are located in a policy store and evaluated
at the Policy Decision Point, which then returns the authorization decision. Using this information, the Policy Enforcement Point can
deliver the appropriate response to the client.

An administrator creates policies in the XACML language. The key top-level element is the PolicySet which aggregates other PolicySet
elements or Policy elements. The Policy element is composed principally of Target, Rule and Obligation elements and is evaluated at the
Policy Decision Point to yield and access decision. Since multiple policies may be found applicable to an access decision, (and since a
single policy can contain multiple Rules) Combining Algorithms are used to reconcile multiple outcomes into a single decision. Standard
Combining Algorithms are defined for Deny-Overrides, Permit-Overrides, First Applicable, and Only-One Applicable outcomes. The Target
element is used to associate a requested resource to an applicable Policy. It contains conditions that the requesting Subject, Resource,
or Action must meet for a Policy Set, Policy, or Rule to be applicable to the resource. The Target includes a build-in scheme for efficient
indexing/lookup of Policies. Rules provide the conditions which test the relevant attributes within a Policy. Any number of Rule elements
may be used each of which generates a true or false outcome. Combining these outcomes yields a single decision for the Policy, which
may be "Permit"”, "Deny", "Indeterminate”, or a "NotApplicable" decision.

Attributes provide the typed values that represent both a resource requester and the Policy's condition predicates. When describing the
requester, attributes may include an issue date and time, issuer identification, and optionally are contained in the Subject, Environment,
Resource and Action elements of the access request. The Attribute Designator element is used to retrieve attribute values from a request
by specifying the name, type, and issuer of attributes. The SubjectAttributeDesignator, ResourceAttributeDesignator,
ActionAttributeDesignator, and EnvironmentAttributeDesignator each retrieves attributes from the respective elements in the request. An
AttributeSelector element is used to locate request attributes using XPATH queries. Since queries can return collections of attributes (all
of the same primitive type) they are placed in a Bag. Functions are then used to compare attributes contained within a Bag.

XKMS (XML Key Management Specification)

XKMS stands for the XML Key Management Specification and consists of two parts: XKISS (XML Key Information Service Specification)

file:///ID|/workspace/wsd-guide/wsd-guide.html (136 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

and XKRSS (XML Key Registration Service Specification). XKISS defines a protocol for resolving or validating public keys contained in
signed and encrypted XML documents, while XKRSS defines a protocol for public key registration, revocation, and recovery. The key
aspect of XKMS is that it serves as a protocol specification between an XKMS client and an XKMS server in which the XKMS server
provides trust services to its clients (in the form of Web services) by performing various PKI (public key infrastructure) operations, such
as public key validation, registration, recovery, and revocation on behalf of the clients. Now let's talk about why we need XKMS. To
explain it, I must discuss PKI first. PKI proves important for e-commerce and Web services. However, one of the obstacles to PKI's wide
adoption is that PKI operations such as public key validation, registration, recovery, and revocation are complex and require large
amounts of computing resources, which prevents some applications and small devices such as cell phones from participating in PKI-
based e-commerce or Web services transactions. XKMS enables an XKMS server to perform these PKI operations. In other words,
applications and small devices, by sending XKMS messages over SOAP (Simple Object Access Protocol), can ask the XKMS server to
perform the PKI operations. In this regard, the XKMS server provides trust services to its clients in the form of Web services.

[PKI refers to a set of security services for authentication, encryption and digital certificate management under which documents are
encrypted with a private key and decrypted using a publicly available key accessible to the recipient via a network. PKI differs from
private key technology, like Kerberos, in which a single key that is shared by the sender and receiver is used to encrypt and decrypt a
message or document.]

XKMS defines a Web services interface to a public key infrastructure. This makes it easy for applications to interface with key-related
services, like registration and revocation, and location and validation. Most developers will only ever need to worry about implementing
XKMS clients. XKMS server components are mostly implemented by providers of public key infrasructure (PKI) providers, such as
Entrust, Baltimore and VeriSign. VeriSign, for example, provides an XKMS responder that can be used to register and query VeriSign's
certificate store. Even SSL server ID's can be validated in real-time using the XKMS interface.

XKMS is a foundational specification for secure Web services, enabling Web services to register and manage cryptographic keys used for
digital signatures and encryption.

When combined with WS-Security, XKMS makes it easier than ever for developers to deploy enterprise applications in the form of secure
Web services available to business partners beyond the firewall.

With XKMS, developers can integrate authentication, digital signature, and encryption services, such as certificate processing and
revocation status checking, into applications in a matter of hours - without the constraints and complications associated with proprietary
PKI software toolkits.

XKMS Functions
An XKMS-compliant service supports the following operations:

. Register: XKMS services can be used to register key pairs for escrow services. Generation of the public key pair may be performed
by either the client or the registration service. Once keys are registered, the XKMS-compliant service manages the revocation and
recovery of registered keys, whether client- or server-generated. Additional functions are reissue, revoke, and recover.

Locate: The Locate service is used to retrieve a public key registered with an XKMS-compliant service. The public key can in turn
be used to encrypt a document or verify a signature.

. Validate: The Validate service is used to ensure that a public key registered with an XKMS-compliant service is valid, and has not
expired or been revoked. The validation service can also be used to check attributes against a public key.

These services can be complimented by having cryptographic capabilities on the client, but client crypto is not required. For example, if a
client must generate keys, then some crypto code, resident on the client, performs the key generation. However, the client can just as
easily have the XKMS service generate the keys that are subsequently managed through the service. For security, however, most client
applications generate a keypair, and then register the public key with the CA.

The Benefits of XKMS
XKMS provides many benefits. The most important benefits are that XKMS is:

. Easy to use: The developer-friendly syntax used in XKMS eliminates the necessity for PKI toolkits and proprietary plug-ins. The
XKMS specification allows developers to rapidly implement trust features, incorporating cryptographic support for XML digital
signatures and XML encryption using standard XML toolkits.

Quick to deploy: By simplifying application development, XKMS removes the need to delay PKI deployment because of , and
instead, moves the complexity of PKI to server side components. Developers can now focus on their core competency of
developing applications rather than the complexities surrounding a PKI deployment.

. Open: The common XML vocabulary used to describe authentication, authorization, and profile information in XML documents
makes XKMS services completely platform, vendor, and transport-protocol-neutral. The XKMS specification has been submitted to
the World Wide Web Consortium (W3C) as an open standard for distribution and registration of keys.

. ldeal for mobile devices: XKMS allow mobile devices to access full-featured PKI through ultra-minimal-footprint client device
interfaces.

. Future-proof: Supports new and emerging PKI developments since the impact of future PKI developments is restricted to server-
side components. By restricting the impact of future PKI developments and advancements to the server-side components, XKMS
protects developers and applications from becoming incompatible with the latest developments in PKI.

WS-Security
The goal of WS-Security is to enable applications to construct secure SOAP message exchanges.

The WS-Security (Web Services Security) specification defines a set of SOAP header extensions for end-to-end SOAP messaging
security. It supports message integrity and confidentiality by allowing communicating partners to exchange signed and encrypted
messages in a Web services environment. Because it is based on XML digital signature and XML Encryption standards, you can digitally

file:///ID|/workspace/wsd-guide/wsd-guide.html (137 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

sign and encrypt any combination of message parts. WS-Security supports multiple security models, such as username/password-based
and certificate-based models. It also supports multiple security technologies, including Kerberos, PKI, SAML, and so on. In addition, it
supports multiple security tokens; for example, tokens that contain Kerberos tickets, X.509 certificates, or SAML assertions.

The following example illustrates a message with a username security token:

(001) <?xm version="1.0" encodi ng="utf-8"?>
(002) <S: Envel ope xm ns: S="http://wwmv. w3. or g/ 2001/ 12/ soap- envel ope"
xm ns: ds="http://wwmv w3. or g/ 2000/ 09/ xni dsi g#" >
(003) <S: Header >
(004) <m path xm ns: m="http://schemas. xm soap. org/rp/">
(005) <m acti on>http://fabri kanl23. con get Quot e</ m acti on>
(006) <m to>http://fabrikanml23. com st ocks</ mto>
(007) <m i d>uui d: 84b9f 5d0- 33f b- 4a81- b02b- 5b760641c1d6</ m i d>
(008) </ m pat h>
(009) <wsse: Security xm ns:wsse="http://schemas. xm soap. or g/ ws/ 2002/ 04/ secext ">
(010) <wsse: User naneToken | d="M/I D"'>
(011) <wsse: User nane>M kal ai </ wsse: User nanme>
(012) </ wsse: User naneToken>
(013) <ds: Si gnhat ur e>
(014) <ds: Si gnedl nf 0>
(015) <ds: Canoni cal i zati onMet hod Al gorithm="..."/>
(016) <ds: Si gnat ureMet hod Al gorithm="..."/>
(017) <ds: Ref erence URI ="#MsgBody" >
(018) <ds: Di gest Met hod Al gorithm="..."/>
(019) <ds: Di gest Val ue>LyLsFOPi 4wPU. . . </ ds: Di gest Val ue>
(020) </ ds: Ref erence>
(021) </ ds: Si gnedl nf 0>
(022) <ds: Si gnat ur eVal ue>DJbchnbgK. . . </ ds: Si gnat ur eVal ue>
(023) <ds: Keyl nf 0>
(024) <wsse: Securit yTokenRef er ence>
(025) <wsse: Ref erence URI ="#WI D'/ >
(026) </ wsse: SecurityTokenRef erence>
(027) </ ds: Keyl nf o>
(028) </ ds: Si gnat ur e>
(029) </ wsse: Security>
(030) </ S: Header >
(031) <S: Body | d="MsgBody" >
(032) <tru: StockSynbol xm ns:tru="http://fabrikaml23. conl payl oads" >
| BA- USA
</tru: St ockSynbol >
(033) </ S: Body>
(034) </ S: Envel ope>

The first two lines start the SOAP envelope. Line (003) begins the headers that are associated with this SOAP message. Lines (004) to
(008) specify how to route this message (as defined in WS-Routing).

Line (009) starts the Securi ty header that we define in WS-Security specification. This header contains security information for an
intended receiver. This element continues until line (029).

Lines (010) to (012) specify a security token that is associated with the message. In this case, it defines username of the client using
the User nameToken. Note that here we assume the service knows the password - in other words, it is a shared secret.

Lines (013) to (028) specify a digital signature. This signature ensures the integrity of the signed elements (that they aren't modified).
The signature uses the XML Signature specification. In this example, the signature is based on a key generated from the users'
password; typically stronger signing mechanisms would be used.

Lines (014) to (021) describe the digital signature. Line (015) specifies how to canonicalize (normalize) the data that is being signed.

Lines (017) to (020) select the elements that are signed. Specifically, line (017) indicates that the S: Body element is signed. In this
example only the message body is signed; typically additional elements of the message, such as parts of the routing header, should be
included in the signature.

Line (022) specifies the signature value of the canonicalized form of the data that is being signed as defined in the XML Signature
specification.

Lines (023) to (027) provide a hint as to where to find the security token associated with this signature. Specifically, lines (024) to (025)
indicate that the security token can be found at (pulled from) the specified URL.

file:///D|/workspace/wsd-guide/wsd-guide.html (138 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Lines (031) to (033) contain the body (payload) of the SOAP message.

Protecting the message content from being intercepted (confidentiality) or illegally modified (integrity) are primary security concerns.
WS-Security specification provides a means to protect a message by encrypting and/or digitally signing a body, a header, an
attachment, or any combination of them (or parts of them). Message integrity is provided by leveraging XML Signature in conjunction
with security tokens to ensure that messages are transmitted without modifications. The integrity mechanisms are designed to support
multiple signatures, potentially by multiple actors, and to be extensible to support additional signature formats. Message confidentiality
leverages XML Encryption in conjunction with security tokens to keep portions of a SOAP message confidential. The encryption
mechanisms are designed to support additional encryption processes and operations by multiple actors.

The Security header block provides a mechanism for attaching security-related information targeted at a specific receiver (SOAP actor).
This MAY be either the ultimate receiver of the message or an intermediary. Consequently, this header block MAY be present multiple
times in a SOAP message. An intermediary on the message path MAY add one or more new sub-elements to an existing Security
header block if they are targeted for the same SOAP node or it MAY add one or more new headers for additional targets. As stated, a
message MAY have multiple Security header blocks if they are targeted for separate receivers. However, only one Security header
block can omit the S: act or attribute and no two Securi ty header blocks can have the same value for S: act or . Message security
information targeted for different receivers MUST appear in different Securi ty header blocks. The Security header block without a
specified S: act or can be consumed by anyone, but MUST NOT be removed prior to the final destination as determined by WS-Routing.
As elements are added to the Security header block, they should be prepended to the existing elements. As such, the Security header
block represents the signing and encryption steps the message sender took to create the message. This prepending rule ensures that the
receiving application MAY process sub-elements in the order they appear in the Securi ty header block, because there will be no forward
dependency among the sub-elements. Note that WS-Security specification does not impose any specific order of processing the sub-
elements. The receiving application can use whatever policy is needed. When a sub-element refers to a key carried in another sub-
element (for example, a signature sub-element that refers to a binary security token sub-element that contains the X.509 certificate
used for the signature), the key-bearing security token SHOULD be prepended subsequent to the key-using sub-element being added, so
that the key material appears before the key-using sub-element. The following illustrates the syntax of this header:

<S: Envel ope>
<S: Header >

<Security S:actor="..." S:nustUnderstand="...">
=l ==
actor attribute is optional, however no two instances of the
header bl ock may onmit an actor or specify the sane actor
oo
</ Security>
</ S: Header >

</ S: Envel ope>

The following sample message illustrates the use of security tokens, signatures, and encryption. For this example, we use a fictitious
"RoutingTransform" that selects the immutable routing headers along with the message body:

(001) <?xm version="1.0" encodi ng="utf-8""?>

(002) <S: Envel ope xm ns: S="htt p://ww. w3. or g/ 2001/ 12/ soap- envel ope"
xm ns: ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#"
xm ns: wsse="http://schemas. xm soap. or g/ ws/ 2002/ 04/ secext "
xm ns: xenc="htt p://ww. w3. or g/ 2001/ 04/ xm enc#" >

(003) <S: Header >

(004) <m path xm ns: m="http://schemas. xm soap. org/rp/">

(005) <m action>http://fabri kanl23. conm get Quot e</ m acti on>
(006) <m to>http://fabrikanl23. com st ocks</ mto>

(007) <m fronmpmai |l t o: j ohnsm t h@ abri kaml23. conx/ m f r o>
(008) <m i d>uui d: 84b9f 5d0- 33f b- 4a81- b02b- 5b760641c1d6</ m i d>
(009) </ m pat h>

(010) <wsse: Security>

(011) <wsse: Bi narySecurityToken

Val ueType="wsse: X509v3"
| d=" X509Token"
Encodi ngType="wsse: Base64Bi nary" >

(012) M | EZz CCA9CgAW BAgl QEnt JZcOr gr Kh5i . . .
(013) </ wsse: Bi narySecurityToken>
(014) <xenc: Encr ypt edKey>
(015) <xenc: Encrypti onMet hod Al gorithnr
"http://ww.w3. org/ 2001/ 04/ xm enc#rsa-1_5"/>
(016) <ds: Keyl nf o>
(017) <ds: KeyName>CN=Hi r oshi Maruyama, C=JP</ds: KeyNane>
(018) </ ds: Keyl nf o>

file:///D|/workspace/wsd-guide/wsd-guide.html (139 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

(019) <xenc: Ci pher Dat a>
(020) <xenc: Ci pher Val ue>d2FpbnmdvbGRf EOl miby\O. . .
(021) </ xenc: G pher Val ue>
(022) </ xenc: C pher Dat a>
(023) <xenc: Ref erencelLi st >
(024) <xenc: Dat aRef erence URI ="#encl"/>
(025) </ xenc: Ref erenceli st >
(026) </ xenc: Encr ypt edKey>
(027) <ds: Si gnat ur e>
(028) <ds: Si gnedl nf o>
(029) <ds: Canoni cal i zat i onMet hod
Al gorithm="http://ww.w3. org/ 2001/ 10/ xm - exc- c14n#"/ >
(030) <ds: Si gnat ur eMet hod
Al gorithm="http://ww.w3. or g/ 2000/ 09/ xm dsi g#r sa- shal"/ >
(031) <ds: Ref er ence>
(032) <ds: Tr ansf or ns>
(033) <ds: Transf orm
Al gorithm="http://...#RoutingTransforn/>
(034) <ds: Transform
Al gorithne"http://ww. w3. or g/ 2001/ 10/ xm - exc- c14n#"/ >
(035) </ ds: Tr ansf or ns>
(036) <ds: Di gest Met hod
Al gorithne"http://ww. w3. or g/ 2000/ 09/ xn dsi g#shal"/>
(037) <ds: Di gest Val ue>LyLsF094hPi 4wPU. . .
(038) </ ds: Di gest Val ue>
(039) </ ds: Ref erence>
(040) </ ds: Si gnedl nf o>
(041) <ds: Si gnat ur eVal ue>
(042) Hp1ZknFz/ 2kQLXDIbchnbgK. . .
(043) </ ds: Si gnat ur eVal ue>
(044) <ds: Keyl nf 0>
(045) <wsse: Securit yTokenRef er ence>
(046) <wsse: Ref erence URI ="#X509Token"/>
(047) </ wsse: SecurityTokenRef erence>
(048) </ ds: Keyl nf o>
(049) </ ds: Si gnat ur e>
(050) </ wsse: Security>

(051) </ S: Header >
(052) <S: Body>

(053) <xenc: Encr ypt edDat a

Type="htt p:// ww. w3. or g/ 2001/ 04/ xm enc#El enent "

| d="encl">
(054) <xenc: Encrypt i onMet hod

Al gorithm="http://ww.w3. org/ 2001/ 04/ xm enc#3des- chc"/ >

(055) <xenc: G pher Dat a>
(056) <xenc: C pher Val ue>d2FpbndvbGRf EOl mdby\O. . .
(057) </ xenc: G pher Val ue>
(058) </ xenc: Ci pher Dat a>
(059) </ xenc: Encr ypt edDat a>

(060) </ S: Body>
(061) </ S: Envel ope>

Lines (003)-(051) contain the SOAP message headers.

Lines (004)-(009) specify the message routing information (as define in WS-Routing). In this case we are sending the message to the
http://fabrikaml23. conl st ocks service requesting the "get Quot e" action.

Lines (010)-(050) represent the Security header block. This contains the security-related information for the message.

Lines (011)-(013) specify a security token that is associated with the message. In this case, it specifies an X.509 certificate that is
encoded as Base64. Line (012) specifies the actual Base64 encoding of the certificate.

Lines (014)-(026) specify the key that is used to encrypt the body of the message. Since this is a symmetric key, it is passed in an
encrypted form. Line (015) defines the algorithm used to encrypt the key. Lines (016)-(018) specify the nhame of the key that was used
to encrypt the symmetric key. Lines (019)-(022) specify the actual encrypted form of the symmetric key. Lines (023)-(025) identify the
encryption block in the message that uses this symmetric key. In this case it is only used to encrypt the body (I d="enc1").

Lines (027)-(049) specify the digital signature. In this example, the signature is based on the X.509 certificate. Lines (028)-(040)
indicate what is being signed. Specifically, Line (029) indicates the canonicalization algorithm (exclusive in this example). Line (030)
indicate the signature algorithm (rsa over shal in this case).

file:///D|/workspace/wsd-guide/wsd-guide.html (140 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Lines (031)-(039) identify the parts of the message that are being signed. Specifically, Line (033) identifies a "transform™. This fictitious
transforms selects the immutable portions of the routing header and the message body. Line (034) specifies the canonicalization
algorithm to use on the selected message parts from line (033). Line (036) indicates the digest algorithm use on the canonicalized data.
Line (037) specifies the digest value resulting from the specified algorithm on the canonicalized data.

Lines (041)-(043) indicate the actual signature value - specified in Line (042).

Lines (044)-(048) indicate the key that was used for the signature. In this case, it is the X.509 certificate included in the message. Line
(046) provides a URI link to the Lines (011)-(013).

The body of the message is represented by Lines (052)-(060).

Lines (053)-(059) represent the encrypted metadata and form of the body using XML Encryption. Line (053) indicates that the "element
value" is being replaced and identifies this encryption. Line (054) specifies the encryption algorithm - Triple-DES in this case. Lines (055)-
(058) contain the actual cipher text (i.e., the result of the encryption). Note that we don't include a reference to the key as the key
references this encryption - Line (024).

Liberty Project

. Create an open standard for identity, authentication and authorization.
. Objective: lower costs, accelerate commercial opportunities, and increase customer satisfaction
Federated standard will enable every business to:

o Maintain their own customer/employee/device data.
s Tie data to an individual's or business’s identity.
o Share data with partners according to its business objectives, and customer’s preferences.

Given a scenario, implement J2EE based web service web-tier and/or EJB-tier basic security mechanisms, such as
mutual authentication, SSL, and access control.

JAX-RPC implementation has to support HTTP Basic authentication. JAX-RPC specifciation does not require JAX-RPC implementation to
support certificate based mutual authentication using HTTP/S (HTTP over SSL).

HTTP Basic Authentication

1. Add the appropriate security elements to the web. xm deployment descriptor:

<?xm versi on="1.0"?>

<web- app version="2.4" ...>
<di spl ay- nane>Basi ¢ Aut henti cation Security Exanpl e</di spl ay- nane>

<security-constraint>
<web- r esour ce- col | ecti on>
<web- r esour ce- name>Secur eHel | o</ web- r esour ce- nane>
<url-pattern>/hello</url-pattern>
<ht t p- met hod>GET</ ht t p- net hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resour ce-col | ecti on>

<aut h- constrai nt >
<r ol e- nane>admi n</r ol e- nane>
</ aut h-constrai nt >

<user - dat a- constrai nt >
<t ransport - guar ant ee>NONE</ t r ansport - guar ant ee>
</ user - dat a- constrai nt >
</ security-constraint>

<l ogi n- confi g>
<aut h- met hod>BASI C</ aut h- met hod>
</l ogi n-confi g>

<security-rol e>
<r ol e- nane>adm n</ r ol e- nane>
</security-rol e>
</ web- app>

2. Set security properties in the client code:

file:///D|/workspace/wsd-guide/wsd-guide.html (141 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

try {

} catch

Stub stub = createProxy();

stub. _set Property(javax.xnl.rpc. St uub. USERNAME_PROPERTY, usernane);

stub. _set Property(javax.xm .rpc. Stub. PASSWORD PROPERTY, password);

stub. _set Property(javax. xm . rpc. St ub. ENDPO NT_ADDRESS PROPERTY, endpoi nt Address);

Hell ol F hell o = (Hell ol F) st ub;

System out. println(hello.sayHel |l o(" Duke (secure)"));
(Exception ex) {

ex. print StackTrace();

Mutual Authentication

1. Configure SSL connector
2. Add the appropriate security elements to the web. xm deployment descriptor:

<?xm version="1.0"?>
<web- app version="2.4" ...>

<di spl ay- name>Secur e Mutual Authenticati on Exanpl e</di spl ay- nane>

<security-constraint>
<web-r esour ce-col | ecti on>
<web- r esour ce- nane>Secur eHel | o</ web- r esour ce- nane>
<url -pattern>/hello</url-pattern>
<ht t p- met hod>GET</ ht t p- net hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resource-col | ecti on>

<user - dat a- const rai nt >
<transport - guar ant ee>CONFI DENTI AL</ tr ansport - guar ant ee>
</ user - dat a- constrai nt >
</ security-constraint>

<l ogi n- confi g>
<aut h- met hod>CL| ENT- CERT</ aut h- net hod>
</l ogi n-confi g>

</ web- app>

3. Set Security Properties in client code:

try {

} catch

Stub stub = createProxy();

Syst em set Property("javax. net.ssl . keyStore", keyStore);

Syst em set Property("javax. net. ssl . keySt or ePassword", keyStorePassword);

System set Property("javax. net.ssl.trustStore", trustStore);

System set Property("javax. net. ssl.trust St orePassword", trustStorePassword);
stub. _set Property(j avax. xnl . rpc. St ub. ENDPO NT_ADDRESS_PROPERTY, endpoi nt Addr ess) ;

Hel l ol F hell o = (Hell ol F) st ub;

System out. println(hel |l 0. sayHel | o(" Duke! secure!"));
(Exception ex) {

ex. print StackTrace();

Describe factors that impact the security requirements of a Web service, such as the relationship between the client
and service provider, the type of data being exchanged, the message format, and the transport mechanism.

1212

Chapter 9. Developing Web Services

Describe the steps required to configure, package, and deploy J2EE Web services and service clients, including a
description of the packaging formats, such as . ear, . war, . j ar, deployment descriptor settings, the associated
Web Services description file, RPC mapping files, and service reference elements used for EJB and servlet

endpoints.

file:///D|/workspace/wsd-guide/wsd-guide.html (142 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Packaging

Port components may be packaged in a WAR file, or EJB JAR file. Port components packaged in a WAR file must use a JAX-RPC Service
Endpoint for the Service Implementation Bean. Port components packaged in a EJB-JAR file must use a Stateless Session Bean for the
Service Implementation Bean. The developer is responsible for packaging, either by containment or reference, the WSDL file, Service
Endpoint Interface class, Service Implementation Bean class, and their dependent classes, JAX-RPC mapping file along with a Web
services deployment descriptor in a J2EE module. The location of the Web services deployment descriptor in the module is module
specific. WSDL files are located relative to the root of the module and are typically located in the wsdl directory that is co-located with
the module deployment descriptor or a subdirectory of it. Mapping files are located relative to the root of the module and are typically co-
located with the WSDL file.

The wsdl directory is a well-known location that contains WSDL files and any relative content the WSDL files may reference. WSDL files
and their relative references will be published during deployment.

Stateless Session EJB Service Implementation Beans are packaged in an EJB-JAR that contains the class files and WSDL files. The
packaging rules follow those defined by the Enterprise JavaBeans specification. In addition, the Web services deployment descriptor
location within the EJB-JAR file is META- | NF/ webser vi ces. xml . The wsdl directory is located at META- | NF/ wsdl .

JAX-RPC Service Endpoints are packaged in a WAR file that contains the class files and WSDL files. The packaging rules for the WAR file
are those defined by the Servlet specification. A Web services deployment descriptor is located in a WAR at WEB- | NF/ webser vi ces. xni .
The wsdl directory is located at VEB- | NF/ wsdl .

Directory Structure for JAX-RPC Web Services

The structure of WAR file is shown below (hel | o- web. war):

[VEB-INF <-------- "special" directory, its content is not accessible for HTTP clients
[VEB- | NF/ web. xm ~ <-------ommnn- servl et container info and service endpoi nt

i mpl ement ati on

[VEB- | NF/ webservi ces. xml <--------- descri bes the Wb Service part of the application

/ VNEB- | NF/ wsdl / Hel | oServi ce.wsdl <--- wsdl is the Wb Servi ce contract published
external ly

[VEB- | NF/ mappi ng. xml =~ <----------- maps the wsdl to the Service Endpoint Interface [SEl]
/ V\EB- | NF/ cl asses/ Hel | oServi ceSEl . cl ass <----- conpi | ed Service Endpoint Interface [SEl]
/ V\EB- | NF/ cl asses/ Hel | oServi cel npl . cl ass <--- conpiled Service |nplenmentation cl ass

The webservi ces. xm captures all the information that the container needs to deploy Web service applications. It provides:

. the location of WSDL - wsdl -file

. the mapping file j axr pc- mappi ng-file

. the port-conponent corresponding to the ports in WSDL

. the Java Service Endpoint Interface (SEI) servi ce-endpoi nt-interface
the Java representation of the WSDL

. the servlet name servl et -1 i nk which acts as the SOAP HTTP listener for it

webservi ces. xnl

<webser vi ces>
<webservi ce-descri pti on>
<webservi ce-descri pti on- nane>Hel | oSer vi ce</ webser vi ce- descri pti on- nane>
<wsdl - fi |l e>\VEB- | NF/ wsdl / Hel | oSer vi ce. wsdl </ wsdl -fil e>
<j axr pc- mappi ng- f i | e>WEB- | NF/ mappi ng. xm </ j axr pc- mappi ng-fil e>
<port-conponent >
<port - conponent - nane>Hel | ol nt er f acePor t </ port - conponent - nane>
<wsdl -port xm ns: my="http://hello">ny: Hel | ol nterfacePort</wsdl - port>
<servi ce- endpoi nt-i nterface>Hel | oSer vi ceSEl </ servi ce-endpoi nt-interface>
<servi ce-i npl - bean>
<servl et-1link>Hell ol nterfacePort</servlet-Iink>
</ servi ce-inpl - bean>
</ port - conponent >
</ webservi ce-descri pti on>
</ webservi ces>

Web Container Deployment Descriptor / VEB- | NF/ web. xml is shown below:

file:///D|/workspace/wsd-guide/wsd-guide.html (143 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<web- app>
<servl| et >
<servl et - nanme>Hel | ol nt er f acePor t </ servl et - nane>
<di spl ay- nanme>Hel | ol nt er f acePor t </ di spl ay- nane>
<descri pti on>JAX- RPC endpoi nt - Hel |l ol nterfacePort</description>
<servl et -cl ass>Hel | oServi cel npl </ servl et -cl ass>

<l oad- on- st art up>1</| oad- on- st ar t up>
</ servl et >

<servl et - mappi ng>
<servl et - nanme>Hel | ol nt er f acePor t </ servl et - nane>
<url - pattern>/Hel | oService</url -pattern>

</ servl et - mappi ng>

</ web- app>

Observe that the servl et -1 i nk of webservi ces. xm refers to the ser vl et - name present in web. xmi . This allows the Web service
implementation to be exposed by a servlet, and hence over HTTP (SOAP over HTTP).

NOTE: the servl et -cl ass in web. xm actually refers to the Java class (in this case Hel | oSer vi cel npl) implementing the Web service
SEI (servi ce-endpoint-interface in webservi ces. xm). It is not actually a Servl et .

Directory Structure for EJB 2.1 Web Services

The structure of JAR (ejb-jar) file is shown below (hel | o-ej b.jar):

[META- | NF
[META- | NF/ ej b-j ar. xm R R EJB Cont ai ner depl oynent descri ptor
/ META- | NF/ webservi ces. xml = <--------- descri bes the Web Service part of the application

/ META- | NF/ wsdl / Hel | oServi ceEJB. wsdl <--- wsdl is the Web Service contract published
external |y

[META- | NF/ mappi ng. xml <------------- maps the wsdl to the Service Endpoint Interface [SEl]
/Hell oServiceSEl.class <----------oommmoonnoon conpi | ed Service Endpoint Interface [SEl]
[Hel | oServi ceBean. cl ass <------------ooooooo- conpi l ed EJB class (Statel ess Session
Bean)

Configuration file / META- | NF/ webser vi ces. xm for an EJB Web Service:

<webservi ces>
<webservi ce-descri pti on>
<webservi ce-descri pti on- name>Hel | oSer vi ceEJB</ webser vi ce- descri pti on- nane>
<wsdl - fil e>META- | NF/ wsdl / Hel | oSer vi ceEJB. wsdl </ wsdl -fil e>
<j axr pc- mappi ng- fi | e>SMETA- | NF/ mappi ng. xm </ j axr pc- mappi ng-fil e>
<port - conponent >
<port - conponent - nanme>Hel | oSer vi cel nf Port </ por t - conponent - nanme>
<wsdl - port xm ns: ny="http://hello" >ny: Hell oServicel nfPort </ wsdl - port >
<servi ce-endpoi nt-interface>Hel | oServi ceSEl </ servi ce-endpoi nt-interface>
<servi ce-i npl - bean>
<ej b-1i nk>Hel | oSer vi ceEJB</ ej b- 1 i nk>
</ servi ce-i npl - bean>
</ port - conmponent >
</ webservi ce-descri pti on>
</ webservi ces>

This webser vi ces. xm is more or less similar to the one for a JAX-RPC Web Service, except for servi ce-i npl - bean having an ej b-1i nk
element in it, pointing to the fact the implementation is an EJB.

EJB Container deployment descriptor (/ META- 1 NF/ ej b-j ar. xm):

<ej b-jar>
<ent er pri se- beans>

file:///D|/workspace/wsd-guide/wsd-guide.html (144 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<sessi on>
<di spl ay- nane>Hel | oSer vi ceEJB</ di spl ay- nane>
<ej b- name>Hel | oSer vi ceEJB</ ej b- nane>
<servi ce- endpoi nt >Hel | oSer vi ceSEl </ ser vi ce- endpoi nt >
<ej b- cl ass>Hel | oSer vi ceBean</ ej b-cl ass>
<sessi on-t ype>St at el ess</ sessi on-type>

</ sessi on>

</ enterprise-beans>
</ ejb-jar>

Observe that the ej b-1i nk of webservi ces. xm is used to relate to the ej b- nane inside ej b-j ar. xm . Moreover the ej b-j ar. xm has a
new entry servi ce- endpoi nt as part of EJB 2.1 in J2EE 1.4 which has the fully qualified Service Endpoint Interface name.The ejb ej b-
cl ass should have implementation of the methods defined in Service Endpoint Interface class.

NOTE: The service implementation class need not explicitly implement the service endpoint interface (through a Java i npl enent s
keyword).This allows for flexibility in service endpoint interface implementation because one can use an existing class and expose the
business methods one wishes to expose by creating a service endpoint interface class. The service implementation class may implement
other methods in addition to those defined by service endpoint interface, but only the service endpoint interface methods are exposed to
the client.

Deployment Descriptors

The webservi ces. xm deployment descriptor file defines the set of Web services that are to be deployed in a Web Services for J2EE
enabled container.

The developer is responsible not only for the implementation of a Web service, but also for declaring its deployment characteristics. The
deployment characteristics are defined in both the module specific deployment descriptor and the webser vi ces. xnl deployment
descriptor. Service Implementations using a stateless session bean must be defined in the ej b-j ar. xm deployment descriptor file using
the sessi on element. Service Implementations using a JAX-RPC Service Endpoint must be defined in the web. xml deployment descriptor
file using the ser vl et - cl ass element. See the Enterprise JavaBeans and Servlet specifications for additional details on developer
requirements for defining deployment descriptors. The developer is also required to provide structural information that defines the Port
components within the webser vi ces. xnl deployment descriptor file. The developer is responsible for providing the set of WSDL
documents that describe the Web services to be deployed, the Java classes that represent the Web services, and the mapping that
correlates the two. The developer is responsible for providing the following information in the webser vi ces. xnm deployment descriptor:

. Port's name.

A logical name for the port must be specified by the developer using the port - conponent - name element. This name bears no
relationship to the WSDL port name. This name must be unique amongst all port component names in a module.
Port's bean class.

The developer declares the implementation of the Web service using the servi ce-i npl - bean element of the deployment
descriptor. The bean declared in this element must refer to a class that implements the methods of the Port's Service Endpoint
Interface. This element allows a choice of implementations. For a JAX-RPC Service Endpoint, the servl et -1 i nk element
associates the port - conponent with a JAX-RPC Service Endpoint class defined in the web. xm by the servl et - cl ass element. For
a stateless session bean implementation, the ej b-11i nk element associates the port - conponent with a sessi on element in the
ejb-jar.xm . The ej b-1i nk element may not refer to a session element defined in another module. A servlet must only be linked
to by a single port - conponent . A session EJB must only be linked to by a single port - conponent .

. Port's Service Endpoint Interface.

The developer must specify the fully qualified class name of the Service Endpoint Interface in the servi ce-endpoi nt-interface
element. If the Service Implementation is a stateless session EJB, the developer must also specify the Service Endpoint Interface
in the EJB deployment descriptor using the ser vi ce- endpoi nt element.

. Port's WSDL definition.

The wsdl - fi | e element specifies a location of the WSDL description of a set of Web services. The location is relative to the root of
the module and must be specified by the developer. The WSDL file may reference (e.g. import) other files contained within the
module using relative references. It may also reference other files external to the module using an explicit URL. Relative imports
are declared relative to the file defining the import. Imported files may import other files as well using relative locations or explicit
URLs. It is recommended that the WSDL file and relative referenced files be packaged in the wsdl directory. Relative references
must not start with a "/*.

. Port's QName.

In addition to specifying the WSDL document, the developer must also specify the WSDL port QNane in the wsdl - port element for
each Port defined in the deployment descriptor.
. JAX-RPC Mapping.

The developer must specify the correlation of the WSDL definition to the interfaces using the j axr pc- mappi ng-fi |l e element. The
same mapping file must be used for all interfaces associated with a wsdl -file.
Handlers.

A developer may optionally specify handlers associated with the port - conponent using the handl er element.

file://ID|/workspace/wsd-guide/wsd-guide.html (145 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Servlet Mapping.

A developer may optionally specify a ser vl et - mappi ng, in the web. xml deployment descriptor, for a JAX-RPC Service Endpoint.
No more than one ser vl et - mappi ng may be specified for a servlet that is linked to by a port - conponent . The url - pattern of the
servl et - mappi ng must be an exact match pattern (i.e. it must not contain an asterisk (“*7)).

Note that if the WSDL specifies an address statement within the port, its URI address is ignored. This address is generated and replaced
during the deployment process in the deployed WSDL.

Service Reference Deployment Descriptor Information

The developer is responsible for defining a servi ce-ref for each Web service a component within the module wants to reference. This
includes the following information:

Service Reference Name.

This defines a logical name for the reference that is used in the client source code. It is recommended, but not required that the
name begin with service/ .
Service type.

The servi ce-interface element defines the fully qualified name of the JAX-RPC Service Interface class returned by the JNDI
lookup.
Ports.

The developer declares requirements for container managed port resolution using the port - conponent - r ef element. The port -
conponent - r ef elements are resolved to a WSDL port by the container.
WSDL definition.

The wsdl - fi | e element specifies a location of the WSDL description of the service. The location is relative to the root of the
module. The WSDL description may be a partial WSDL, but must at least include the port Type and bi ndi ng elements. The WSDL
description provided by the developer is considered a template that must be preserved by the assembly/deployment process. In
other words, the WSDL description contains a declaration of the application’s dependency on port Types, bi ndi ngs, and QNanes.
The WSDL document must be fully specified, including the servi ce and port elements, if the application is dependent on port
MNares (e.g. uses the Servi ce. get Port (QNane, G ass) method). The developer must specify the wsdl -fi | e if any of the
following Ser vi ce methods are used.

Call createCall () throws ServiceException;

java.rm . Renote get Port (java.l ang. C ass servi ceEndpoi ntlnterface) throws ServiceException;
j avax. xm . namespace. QNane get Ser vi ceNane() ;

java.util.lterator getPorts() throws Servi ceExcepti on;

java. net. URL get WSDLDocunent Locati on() ;

The WSDL file may reference (e.g. import) other files contained within the module using relative references. It may also reference
other files external to the module using an explicit URL. Relative imports are declared relative to the file defining the i nport .
Imported files may import other files as well using relative locations or explicit URLs. Relative references must not start with a "/".

Service Port.

If the specified wsdl - fi | e has more than one service element, the developer must specify the servi ce- gnane.
JAX-RPC Mapping.

The developer specifies the correlation of the WSDL definition to the interfaces using the j axr pc- mappi ng-fil e element. The
location is relative to the root of the module. The same mapping file must be used for all interfaces associated with a wsdl -file.
The developer must specify the j axr pc- nappi ng-fil e if the wsdl -fi | e is specified.

Handlers.

A developer may optionally specify handlers associated with the servi ce-ref using the handl er element.

Below is provided an extract of the web. xm with the servi ce-ref and items of interest noted:

<web- app>

<service-ref>
<servi ce-ref - nanme>servi ce/ M/Hel | oSer vi ceRef </ servi ce-r ef - nane> <l-- [1] --

<servi ce-interface>j avax. xm . rpc. Servi ce</service-interface> <l-- [2] --
<wsdl - fi | e>VEB- | NF/ wsdl / Hel | oServi ce. wsdl </ wsdl -fil e>

<j axr pc- mappi ng- f i | e>VEB- | NF/ mappi ng. xm </ j axr pc- mappi ng-fil e>
<servi ce-qnane xm ns: nmy="http://hello">nmy: Hel | oServi ce</servi ce-gnane> <!-- [3] --

file:///D|/workspace/wsd-guide/wsd-guide.html (146 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

>
<port - conponent - r ef >
<servi ce- endpoi nt-interface>hel | 0. Hel | ol nt erface</ servi ce-endpoi nt-i nterface>
</ port - conponent -r ef >
</ service-ref>
<web- app>

. [1] Logical name that components in your module will use to look up the Web service
. [2] The classname of the interface whose implementation will be returned by the process of JNDI lookup
. [3] The servi ce- gnane is the qualified name of the service, as present inside the packaged WSDL

The Servlet (or JSP) executing the look up of the Web service has code as is shown below:

public String consuneService (String nane) {

Context ic = new Initial Context();
Service service = (Service)ic.|ookup("java: conp/ env/ servi ce/ MyHel | oServi ceRef ") ;

/] declare the qualified name of the port, as specified in the wsdl
Nane port QNane= new QNanme("http://hello","Hellol nterfacePort");

/] get a handle on that port

/1 Service. get Port (port QNane, SEl cl ass)

Hel l ol nterface hell oPort = (Hellolnterface)service. getPort (portQNane,
hel | 0. Hel | ol nt erf ace. cl ass);

/1 invoke the operation : sayHell o()
resul t FronBervi ce = hel |l oPort. sayHel | o(nane) ;

The client, which is a Servl et in this case, makes use of JNDI lookup to get an instance of the j avax. xml . rpc. Servi ce. It makes use of
the 'Ser vi ce' object to get a handle on a 'Port ' of the Web service, these are the ports defined in the WSDL representing the service.
The port obtained can be cast into a locally packaged service endpoint interface (hel | 0. Hel | ol nt er f ace), and the available methods
invoked on it. The locally packaged service endpoint interface can be either generated from the WSDL using a tool or can be already
available and mapped to the WSDL using a JAX-RPC mapping file. The client can use this 'Ser vi ce' object to get a handle on the 'Cal | *
object as well, and make a DIl Web Service call.

The important observation to be made here is that a client always accesses the Service implementation indirectly by way of a JNDI
lookup - that is, through the container - and is never passed a direct reference to the Web service implementation. That way, the
container can intervene and provide services (logging, security, management) for the client. Moreover a J2EE Web service client
remains oblivious of how a port operates and concerns itself only with the methods a port defines.

Note: similar servi ce-ref tags inside an ej b-j ar. xm will allow an EJB or application client to look up and invoke a remote Web
service.

JAX-RPC Mapping Deployment Descriptor

The JAX-RPC mapping deployment descriptor has no standard file name, though it is recommended that the file use a . xm suffix. There
is a 1-1 correspondence between WSDL files and mapping files within a module. The JAX-RPC mapping deployment descriptor contains
information that correlates the mapping between the Java interfaces and WSDL definition. A deployment tool uses this information along
with the WSDL file to generate stubs and TIEs for the deployed services and service-refs.

Deployment

Deployment starts with a service enabled application or module. The deployer uses a deployment tool to start the deployment process.
In general, the deployment tool validates the content as a correctly assembled deployment artifact, collects binding information from the
deployer, deploys the components and Web services defined within the modules, publishes the WSDL documents representing the
deployed Web services, deploys any clients using Web services, configures the server and starts the application. The deployment tool
starts the deployment process by examining the deployable artifact and determining which modules are Web service enabled by looking
for a webservices.xml deployment descriptor file contained within the module. Deployment of services occurs before resolution of service
references. This is done to allow deployment to update the WSDL port addresses before the service references to them are processed.
Validation of the artifact packaging is performed to ensure that:

. Every port in every WSDL defined in the Web services deployment descriptor has a corresponding port - conponent element.

. If the Service Implementation Bean is an EJB, the transaction attributes for the methods defined by the SEI DO NOT include
Mandat ory.

. JAX-RPC service components are only packaged within a WAR file.

. Stateless session bean Web services are only packaged within an EJB-JAR file.

. The WSDL bindings used by the WSDL ports are supported by the Web Services for J2EE runtime. Bindings that are not supported

file:///D|/workspace/wsd-guide/wsd-guide.html (147 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

may be declared within the WSDL if no port uses them.

Deployment of each port - conponent is dependent upon the service implementation and container used. Deployment of a JAX-RPC
Service Endpoint requires different handling than deployment of a session bean service.

If the implementation is a JAX-RPC Service Endpoint, a servlet is generated to handle parsing the incoming SOAP request and dispatch it
to an instance of the JAX-RPC service component. The generated servlet class is dependent on threading model of the JAX-RPC Service
Endpoint. The web. xm deployment descriptor is updated to replace the JAX-RPC Service Endpoint class with the generated servlet class.
If the JAX-RPC Service Endpoint was specified without a corresponding ser vl et - mappi ng, the deployment tool generates one. The WSDL
port address for the Port component is the combination of the web app cont ext -root and url - pattern of the servl et - mappi ng. If the
implementation is a stateless session bean, the deployment tool has a variety of options available to it. In general, the deployment tool
generates a servlet to handle parsing the incoming SOAP request, the servlet obtains a reference to an instance of an appropriate

EJBObj ect and dispatches the request to the stateless session EJB. How the request is dispatched to the Service Implementation Bean is
dependent on the deployment tool and deploy time binding information supplied by the deployer.

The deployment tool must deploy and publish all the ports of all WSDL documents described in the Web services deployment descriptor.
The deployment tool updates or generates the WSDL port address for each deployed port - conponent . The updated WSDL documents
are then published to a location determined by the deployer. It could be as simple as publishing to a file in the modules containing the
deployed services, a URL location representing the deployed services of the server, a UDDI or ebXML registry, or a combination of these.
This is required for the next step, which is resolving references to Web services.

For each service reference described in the Web services client deployment descriptors, the deployment tool ensures that the client code
can access the Web service. The deployment tool examines the information provided in the client deployment descriptor (the Service
interface class, the Service Endpoint Interface class, and WSDL ports the client wants to access) as well as the JAX-RPC mapping
information. In general the procedure includes providing an implementation of the JAX-RPC Service interface class declared in the
deployment descriptor service reference, generating stubs for all the servi ce- endpoi nt -i nt er f ace declarations (if generated Stubs are
supported and the deployer decides to use them), and binding the Service class implementation into a INDI nhamespace. The specifics
depend on whether or not the service is declared as a client managed or container managed access.

When client managed port access is used, the deployment tool must provide generated stubs or dynamic proxy access to every port
declared within the Web services client deployment descriptor. The choice of generated stub or dynamic proxy is deploy time binding
information. The container must provide an implementation for a Generated Service Interface if declared within the deployment
descriptor.

When container managed port access to a service is used, the container must provide generated stubs or dynamic proxy access to every
port declared within the deployment descriptor. The choice of generated stub or dynamic proxy is deploy time binding information. The
deployment descriptor may contain a port - conponent -1 i nk to associate the reference not only with the Service Endpoint
Implementation, but with the WSDL that defines it.

Once the Web services enabled deployable artifact has been converted into a J2EE deployable artifact, the deployment process continues
using normal deployment processes.

Generation of any run-time classes the container requires to support a JAX-RPC Service Endpoint or Stateless Session Bean Service
Implementation is provider specific. The behavior of the run-time classes must match the deployment descriptor settings of the
component. A JAX-RPC Service Endpoint must match the behavior defined by the servl et element in the web. xm deployment
descriptor. A Stateless Session Bean Service Implementation must match the behavior defined by the sessi on element and the
assenbl y-descri ptor in the ej b-j ar. xm deployment descriptor.

The container must update and/or generate a deployed WSDL document for each declared wsdl -fi | e element in the Web services
deployment descriptor (webser vi ces. xm). If multiple wsdl -fi | e elements refer to the same location, a separate WSDL document must
be generated for each. The container must not update a WSDL file located in the document root of a WAR file.

The WSDL document described by the wsdl - fi | e element must contain servi ce and port elements and every port - conponent in the
deployment descriptor must have a corresponding WSDL port and vice versa. The deployment tool must update the WSDL port address
element to produce a deployed WSDL document. The generated port address information is deployment time binding information. In the
case of a port - conponent within a web module, the address is partially constrained by the cont ext - r oot of the web application and
partially constructed from the ser vl et - mappi ng (if specified).

The deployment tool and/or container must make the WSDL document that a servi ce-ref is bound to available via a URL returned by
the Service Interface get WsDLDocunent Locat i on() method. This may or may not be the same WSDL document packaged in the module.
The process of publishing the bound servi ce-ref WSDL is analogous to publishing deployed WSDL, but only the servi ce-ref thatis
bound to it is required to have access to it. A Web Services for J2EE provider is required to provide a URL that maintains the referential
integrity of the WSDL document the servi ce-ref is bound to if the wsdl -fi | e element refers to a document located in the wsdl
directory or one of its subdirectories.

The deployment tool must publish every deployed WSDL document. The deployed WSDL document may be published to a file, URL, or
registry. File and URL publication must be supported by the provider. File publication includes within the generated artifacts of the
application. Publication to a registry, such as UDDI or ebXML, is encouraged but is not required. If publication to a location other than
file or URL is supported, then location of a WSDL document containing a service from that location must also be supported. As an
example, a Web services deployment descriptor declares a wsdl - fi | e St ockQuot eDescri pti on. wsdl and a port - conponent which
declares a port QNane within the WSDL document. When deployed, the port address in St ockQuot eDescri pti on. wsdl is updated to the
deployed location. This is published to a UDDI registry location. In the same application, a servi ce-ref uses a port-conponent-1ink to
refer to the deployed port - conponent . The provider must support locating the deployed WSDL for that port component from the registry
it was published to. This support must be available to a deployed client that is not bundled with the application containing the service.
Publishing to at least one location is required. Publishing to multiple locations is allowed, but not required. The choice of where (both
location and how many places) to publish is deployment time binding information. A Web Services for J2EE provider is required to

file:///D|/workspace/wsd-guide/wsd-guide.html (148 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

support publishing a deployed WSDL document if the Web services deployment descriptor (webser vi ces. xm) wsdl -fi | e element refers
to a WSDL file contained in the wsdl directory or subdirectory. A vendor may support publication of WSDL files packaged in other
locations, but these are considered non-portable. A provider may publish the static content (e.g. no JSPs or Servlets) of the entire wsdl
directory and all its subdirectories if the deploy tool cannot compute the minimal set of documents to publish in order to maintain
referential integrity. The recommended practice is to place WSDL files referenced by a wsdl -fi | e element and their relative imported
documents under the wsdl directory. Web Services for J2EE providers are free to organize the published WSDL documents however they
see fit so long as referential integrity is maintained. For example, the wsdl directory tree may be collapsed to a flat published directory
structure (updating import statements appropriately). Clients should not depend on the wsdl directory structure being maintained during
publication. Access to relatively imported documents should only be attempted by traversing the published WSDL document at the
location chosen by the deployer.

The container must provide an implementation of the JAX-RPC Service Interface. There is no requirement for a Service Implementation
to be created during deployment. The container may substitute a Generated Service Interface Implementation for a generic Service
Interface Implementation. The container must provide an implementation of the JAX-RPC Generated Service Interface if the Web
services client deployment descriptor defines one. A Generated Service Interface Implementation will typically be provided during
deployment. The Service Interface Implementation must provide a static stub and/or dynamic proxy for all ports declared by the service
element in the WSDL description. A container provider must support at least one of static stubs or dynamic proxies, but may provide
support for both. The container must make the required Service Interface Implementation available at the JNDI namespace location

j ava: conp/ env/ servi ce-r ef - nane where servi ce-r ef - nane is the name declared within the Web services client deployment descriptor
using the servi ce-ref - name element.

If a servi ce-ref contains a port - conponent - ref that contains a port - conponent -1 i nk, the deployer should bind the container
managed Port for the SEI to the deployed port address of the port - conponent referred to by the port - conponent - i nk. For example,
given a webser vi ces. xnl file containing:

<webser vi ces>
<webser vi ce-descri ption>
<webser vi ce-descri pti on- name>JoesSer vi ces</ webser vi ce-descri pti on- name>
<wsdl - fil e>SMETA- | NF/ j oe. wsdl </ wsdl -fil e>
<j axr pc- mappi ng-f i | e>META- | NF/ mappi ng. xm </ j axr pc- mappi ng-fil e>
<port - conponent >
<port - conponent - name>JoePor t </ por t - conponent - nane>

<servi ce-i npl - bean>
<ej b-1i nk>JoeEJB</ ej b- | i nk>
</ servi ce-i npl - bean>
</ port - conponent >
</ webser vi ce-descri pti on>
</ webservi ces>

and a module's deployment descriptor containing:

<servi ce-ref>
<servi ce-ref-name>servi ce/ Joe</ servi ce-r ef - name>
<servi ce-interface>javax. xm . rpc. Servi ce</service-interface>
<wsdl - fil e>VEB- | NF/ j oe. wsdl </ wsdl -fil e>

<port - conponent - r ef >
<servi ce- endpoi nt-i nt erface>sanpl e. Joe</ servi ce-endpoi nt -i nt erf ace>
<port - conponent - | i nk>JoePort </ port - conponent - | i nk>
</ port - conponent -r ef >
</ service-ref>

During deployment, the deployer must provide a binding for the port address of the JoePort port - conponent . This port address must
be defined in the published WSDL for JoesSer vi ces. The deployer must also provide a binding for container managed port access to the
sanpl e. Joe Service Endpoint Interface. This should be the same binding used for the port address of the JoePort port-conponent .
When providing a binding for a port - conponent - r ef , the deployer must ensure that the port - conponent - r ef is compatible with the
Port being bound to.

EJB 2.1 Web Service deployment descriptor
The Bean Provider must use web service references to locate web service interfaces as follows.

. Assign an entry in the enterprise bean’s environment to the reference.
The EJB specification recommends, but does not require, that all references to web services be organized in the service
subcontext of the bean’s environment (i.e., in the j ava: conp/ env/ servi ce JNDI context).

. Look up the JAX-RPC web service interrface of the referenced service in the enterprise bean's environment using JNDI.

file:///D|/workspace/wsd-guide/wsd-guide.html (149 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

The following example illustrates how an enterprise bean uses an web service reference to locate a web service interface and invoke a
method on the service endpoint:

public class |nvestnentBean inplenments SessionBean {
public void checkPortfolio(...) {

/] Obtain the default initial JNDI context.
Context initCtx = new Initial Context();

/1 Look up the stock quote service in the environnment.
com exanpl e. St ockQuot eServi ce sqs =
(com exanpl e. St ockQuot eServi ce)i ni t Ct x. | ookup(
"j ava: conp/ env/ servi ce/ St ockQuot eSer vi ce") ;

/] Get the stub for the service endpoint
com exanpl e. St ockQuot eProvi der sqp = sgs. get St ockQuot eProvi der Port () ;

/1l Get a quote
fl oat quotePrice = sqp.getlLastTradePrice(...);

In the example, the Bean Provider of the | nvest nent Bean enterprise bean assigned the environment entry servi ce/ St ockQuot eServi ce
as the web service reference name to refer to the St ockQuot eSer vi ce JAX-RPC web service interface.

Although the web service reference is an entry in the enterprise bean's environment, the Bean Provider must not use a env-entry
element to declare it. Instead, the Bean Provider must declare all the web service references using the servi ce-ref elements of the
deployment descriptor. This allows the ej b-j ar consumer (i.e. Application Assembler or Deployer) to discover all the web service
references used by the enterprise bean.

Each servi ce-ref element describes the interface requirements that the referencing enterprise bean has for the referenced web service.
The servi ce-ref element contains an optional descri pti on element and the mandatory servi ce-ref-nanme and service-interface
elements. The use of service references and the servi ce-ref deployment descriptor element are described in further detail in [Web
Services for J2EE, Version 1.1. http://jcp.org/en/jsr/detail?id=109, http://jcp.org/en/jsr/detail?id=921].

The servi ce-ref - nanme element specifies the web service reference name: its value is the environment entry name used in the
enterprise bean code. The servi ce-i nt er f ace element specifies the fully qualified name of the JAX-RPC service interface returned by
the JNDI lookup.

A web service reference is scoped to the enterprise bean whose declaration contains the servi ce-ref element. This means that the web
service reference is not accessible to other enterprise beans at runtime, and that other enterprise beans may define servi ce-r ef
elements with the same ser vi ce-r ef - name without causing a name conflict.

The following example illustrates the declaration of a web service reference in the deployment descriptor (ej b-j ar. xm):

<sessi on>

<ej b- name>| nvest ment Bean</ ej b- nane>
<ej b- cl ass>com wonbat . enpl . | nvest nent Bean</ ej b- cl ass>

<servi ce-ref>
<descri pti on>
This is a reference to the stock quote
service used to estimate portfolio val ue.
</ descri ption>
<servi ce-ref - nanme>ser vi ce/ St ockQuot eSer vi ce</ servi ce-r ef - nane>
<servi ce-interface>com exanpl e. St ockQuot eServi ce</servi ce-i nterface>
</ service-ref>

</ sessi on>

JAX-RPC Web Services deployment descriptor

JSR-109 [http://jcp.org/jsr/detail/109.jsp] defines the model for packaging a Web service interface with its associated WSDL description
and associated classes. It defines a mechanism for JAX-RPC-enabled Web containers to link to a component that implements this Web
service. A JAX-RPC Web service implementation component uses the APIs defined by the JAX-RPC specification, which defines its

file:///D|/workspace/wsd-guide/wsd-guide.html (150 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

contract with the JAX-RPC enabled Web container. It is packaged into the WAR file. The Web service developer makes a declaration of
this component using the usual ser vl et declaration. The JAX-RPC-enabled Web container must support the developer in using the Web
deployment descriptor to define the following information for the endpont implementation component, using the same syntax as for
HTTP Servlet components:

. alogical name which may be used to locate this endpoint description among the other Web components in the WAR
. the fully qualified Java class name of this endpoint implementation

. descriptions of the component which may be displayed in a tool

. the order in which the component is initialized relative to other Web components in the Web container

. security-rol e-reference that it may use to test whether the authenticated user is in a logical security role

. whether or not to override the identity propagated to EJBs called by this component

Any servlet initialization parameters defined by the developer for this Web component may be ignored by the container. Additionally, the
JAX-RPC enabled Web component inherits the traditional Web component mechanisms for defining information:

. mapping of the component to the Web container's URL namespace using the servlet mapping technique
authorization constraints on Web components using security constraints

. the ability to use servlet filters to provide low-level byte stream support for manipulating JAX-RPC messages using the filter
mapping technique

. the timeout characteristics of any HTTP sessions that are associated with the component

. links to J2EE objects stored in the JNDI namespace

ﬂ* descrniption |
| + display-name |

&+ icon

|+ service-ref-name |

+ servive-ref | |+ service-interface |

®| + wsdl-fila \

7} # jaxrpe-mapping-file |

(7| ¢ service-gname |

(%) ¢ port-component-ref |

[+ handier |

The servi ce-ref declares the reference to a Web service. The servi ce-ref - nane declares the logical name that the components in the
module use to look up the Web service. It is recommended that all service reference names start with / servi ce/ . The servi ce-

i nt erface defines the fully qualified class name of the JAX-RPC Service interface that the client depends on. In most cases, the value
will be j avax. xm . rpc. Servi ce. A JAX-RPC generated Service Interface class may also be specified. The wsdl -fi | e element contains
the URI location of a WSDL file. The location is relative to the root of the module. The j axr pc- mappi ng-fi | e contains the name of a file
that describes the JAX-RPC mapping between the Java interaces used by the application and the WSDL description in the wsdl -fil e.
The file name is a relative path within the module file. The servi ce- gnane element declares the specific WSDL service element that is
being refered to. It is not specified if no wsdl -fi |l e is declared. The port - conponent - r ef element declares a client dependency on the
container for resolving a Service Endpoint Interface to a WSDL port. It optionally associates the Service Endpoint Interface with a
particular port - conponent . This is only used by the container for a Servi ce. get Port (O ass) method call. The handl er element
declares the handler for a port - conponent . Handlers can access the i ni t - par amnane- val ue pairs using the Handl er | nf o interface. If
port - name is not specified, the handler is assumed to be associated with all ports of the service. See JSR-109 Specification
[http://www.jcp.org/en/jsr/detail?id=921] for detail. The container that is not a part of a J2EE implementation is not required to support
this element. Example of web. xni :

file:///ID|/workspace/wsd-guide/wsd-guide.html (151 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Given a set of requirements, develop code to process XML files using the SAX, DOM, XSLT, and JAXB APIs.

1212

Given an XML schema for a document style Web service create a WSDL file that describes the service and generate
a service implementation.

WSDL file:

Generated service endpoints interface (SEI):

Generated exception class:

. portType = ABSTRACT INTERFACE
. operation = METHOD
. message = PARAMETERS, RETURN VALUES AND EXCEPTIONS

file:///D|/workspace/wsd-guide/wsd-guide.html (152 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

More detailed example (also demonstrates references in SOAP 1.1 message):

WSDL file:

<wsdl : definitions xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: xsd="htt p: //wwmv. w3. or g/ 2001/ XM_Schenma"
xm ns: soap="http://schemas. xnl soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww. exanpl e. conf
t ar get Nanmespace="htt p: / / ww. exanpl e. coni' >

<wsdl : t ypes>
<xsd: schenm t ar get Nanmespace="htt p://ww. exanpl e. coni >

<!-- "Person" type used by "conpare" operation,
note use optional attributes -->

<xsd: conpl exType nanme="Person">
<xsd: sequence>
<xsd: el ement nanme="first Nane" type="xsd:string" />
<xsd: el enent nanme="|ast Name" type="xsd:string" />
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:|D' use="optional" />
<xsd:attri bute nanme="href" type="xsd:anyURl " use="optional" />
</ xsd: conpl exType>

</ xsd: schema>
</ wsdl : t ypes>

<!-- RPC style nessage definitions -->

<wsdl : message nane="conpar el nput ">
<wsdl : part name="personl" type="tns:Person" />
<wsdl : part name="person2" type="tns: Person" />
</ wsdl : nessage>

<wsdl : message nane="conpar eCut put ">
<wsdl : part nane="result" type="xsd: bool ean" />
</ wsdl| : nessage>

<I-- Ceonetry portType -->

<wsdl : port Type nanme="Hunman">
<wsdl : oper ati on name="conpare" >
<wsdl : i nput nessage="t ns: conpar el nput" />
<wsdl| : out put nessage="t ns: conpar eCut put" />
</ wsdl : oper ati on>
</ wsdl : port Type>

<I-- Binding for "Human" port Type that
uses SOAP encoding -->

<wsdl : bi ndi ng name="HunmanBi ndi ng" type="tns: Human" >
<soap: bi nding style="rpc" transport="http://schenas. xm soap. or g/ soap/ htt p"
<wsdl : oper ati on nanme="conpare">

<soap: oper ati on soapAction="" style="rpc" />
<wsdl : i nput nessage="t ns: conpar el nput ">
<soap: body nanespace="htt p://wwmv. exanpl e. conf' use="literal" />

</ wsdl : i nput >
<wsdl : out put nessage="t ns: conpar eCut put " >
<soap: body nanespace="htt p://wwmv. exanpl e. conf' use="literal" />
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : port Type>

</wsdl : definitions>

Will generate SEI:

public interface Human extends java.rm . Renote {
publ i ¢ bool ean conpar e(Person personl, Person person2) throws
java.rm . Renot eExcepti on;

file:///D|/workspace/wsd-guide/wsd-guide.html (153 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Following Web-Service call:

will be serialized in the following SOAP 1.1 message:

Following Web-Service call:

will be serialized in the following SOAP 1.1 message:

Given a set of requirements, develop code to create an XML-based, document style, Web service using the JAX-RPC

Implement a SOAP logging mechanism for testing and debugging a Web Service application using J2EE Web
Service APIs.

1212

Given a set of requirements, develop code to handle system and service exceptions and faults received by a Web

file:///D|/workspace/wsd-guide/wsd-guide.html (154 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

services client.
1212

Chapter 10. General Design and Architecture

Describe the characteristics of a service oriented architecture and how Web Services fits to this model.

Web services is a service oriented architecture which allows for creating an abstract definition of a service, providing a concrete
implementation of a service, publishing and finding a service, service instance selection, and interoperable service use. In general a Web
service implementation and client use may be decoupled in a variety of ways. Client and server implementations can be decoupled in
programming model. Concrete implementations may be decoupled in logic and transport.

The service provider defines an abstract service description using the Web Services Description Language (WSDL). A concrete Service is
then created from the abstract service description yielding a concrete service description in WSDL. The concrete service description can
then be published to a registry such as Universal Description, Discovery and Integration (UDDI). A service requestor can use a registry
to locate a service description and from that service description select and use a concrete implementation of the service. The abstract
service description is defined in a WSDL document as a PortType. A concrete Service instance is defined by the combination of a
PortType, transport & encoding binding and an address as a WSDL port. Sets of ports are aggregated into a WSDL service.

Given a scenario, design a J2EE service using the Business Delegate, Service Locator, and/or Proxy client-side
design patterns and the Adapter, Command, Web Service Broker, and/or Fagade server-side patterns.

Business Delegate
Problem:

. You want to hide clients from the complexity of remote communication with business service components. Business components
are exposed to clients leading to coupling and fine-grained access.

Forces:

. Clients need access to business services.
Complexity of remote objects. You want to avoid unnecessary invocation of remote services.

. Clients and business components become tightly coupled. You want to minimize coupling between clients and the business
services, thus hiding the underlying implementation details of the service, such as lookup and access.

. Business services APIs may change. You want to hide the details of service creation, reconfiguration, and invocation retries from
the clients.

Solution:

. Use a Business Delegate to encapsulate access to a business service. The Business Delegate hides the implementation details of
the business service, such as lookup and access mechanisms. Use a Business Delegate to reduce coupling between presentation-
tier clients and business services:

Session Facade I\—\}

Client accesses BusinessDelegate Lses BusinessService
1 1..n
0..n M
uses
1 |
Servicelocator lookup { create i

<<Singleton=>
EJB Home Factory

Consequences:

file://ID|/workspace/wsd-guide/wsd-guide.html (155 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Reduces coupling, increases maintainability.
. Implements failure recovery: Retry or Synchronize.
Translates network (System) Exceptions to Business service Exceptions.
. Exposes simpler, uniform Interface to the business tier.
. Performance enhancing cache.
. Hides complexities of remote services.

Service Locator
Problem:

. Clients want to transparently locate business components and services in a uniform manner.
Forces:

. Vendor dependencies are exposed to the clients, we want to encapsulate vendor dependencies for registry implementations, and
hide the dependency and complexity from the clients.

. Complexity and duplication of lookup and creation. Clients want to centralize and reuse the implementation of lookup
mechanisms.
Clients may need to reestablish connection to a previously accessed business object.

. Clients want to avoid performance overhead related to initial context creation and service lookups.

Solution:

Use a Service Locator to implement and encapsulate service and component lookup. A Service Locator hides the complexities of
Initial Context creation, lookup, and object re-creation:

<<Sing|eton>>t‘]

-
-
.
-
-

Client uses Servicelocator

create

14

maintains
1

InitialContext

Cache

laakup

caches

1..n

W
Hses BusinessService » resalve

Consequences:

. Abstracts complexity of lookups.

. Uniform lookup for all clients.

. Improves network performance.

. Improves client performance by caching.

Proxy
Problem:

. Provide a stand-in or placeholder to another object, in order to control access to it.
Forces:

. The desired object may be inaccessible (if it exists in a different address space).
. The desired object may be expensive to instantiate and you want to delay its creation until absolutely necessary.
. The desired object may need to be protected from unauthorized access.

You may need to perform special actions upon accessing the desired object.

file:///D|/workspace/wsd-guide/wsd-guide.html (156 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Solution:

. Use a Proxy to provide a separate implementation of interface and working code for location transparency:

«interface=
L BusinessObject
implements ,* “. implements
BusinessObjectimpl | 1 1. BusinessObjectProxy
uses
Consequences:

. Decouples interface and implementation by providing two objects.

. Proxy handles all incoming requests to the object, it knows how to contact the object if it is remotely located.

. Proxy passes along all authorized communication to the object (and prevents unauthorized communication).
If the Implementation class changes, the Proxy remains the same.

. An example is the EJB's Remote Interface.

Session Facade
Problem:

. Tight coupling between clients and business tier; fine-grained access.
Forces:

. You want to avoid giving clients direct access to business-tier components, to prevent tight coupling with the clients.

. Numerous business objects are exposed over the network.

. No uniform access to business tier. You want to centralize and aggregate all business logic that needs to be exposed to remote
clients.
Clients are exposed to complex interactions and interdependencies of business objects. You want to hide the complex interactions
and interdependencies between business components and services to improve manageability, centralize logic, increase flexibility,
and improve ability to cope with changes.

Solution:

. Use a Session Facade to encapsulate business-tier components and expose a coarse-grained service to remote clients. Clients
access a Session Facade instead of accessing business components directly. Use a Session Facade to encapsulate the complexity
of interactions:

Client aCesses | SessionFacade accesses BusinessComponent
1..n 1..A l..n 1..n

AW

EJB Session Bean Il]

i i ApplicationServi
BusinessObject pplicationService

DataAccessObject

Consequences:

file:///ID|/workspace/wsd-guide/wsd-guide.html (157 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

. Controller layer for business tier.
. Uniform exposure of business components.
. Reduces coupling between the tiers.
Provides a uniform coarse-grained access.
. Centralizes business logic.
. Centralizes security management.
. Centralizes transaction control.
. Exposes fewer remote interfaces to clients.
Improves performance, reduces fine-grained remote methods.

Adapter (Wrapper)
Problem:
. Convert the interface of a class into another interface clients expect.
Forces:
. A potentially reusable class may not have the appropriate interface required by the particular application domain.
Solution:

. Adapter lets classes work together that could not otherwise because of incompatible interfaces. Use an Adapter pattern to adapt
one interface to another:

Client Luses Target

+ «abstract> myOperation ()

Adapter adaptee Adaptee

+ myOperation {) + mySpecificOperation {)

-

-
-
-
-

public void myOperation() {
adaptee.mySpecificOperation();
¥

Consequences:

Adapter pattern maps the interface of one class onto another so that they can work together. These incompatible classes may
come from different libraries or frameworks.

. Adapter pattern can be used to expose existing component as Web Service.

. Adapter pattern helps resolve integration issues.

Command
Problem:

. There are a lot of similar methods, and the interface to implement that kind of object is becoming heavy.
Forces:

. Too many public methods for other objects to call. An interface that is unworkable and always changing. You feel that a method
name must include prose describing the exact action, and this is preventing layering your code.

Solution:

. Encapsulate a request as a Command object, thereby letting you parameterize clients with different requests, queue or log
requests, and support undoable operations.

file:///ID|/workspace/wsd-guide/wsd-guide.html (158 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Client Invoker «interfaces
Command

+ execute [)

4

Receiver | 1

- receiver
11+ action ()
ConcreteCommand
- state
creates
>+execute()

.
"
.
'

public void execute(} {
receiver.action();
by

Consequences:

Command pattern is an example of pluggable behavior that enforce client access to Web Services.

. The Command pattern is commonly used for gathering requests from client objects and packaging them into a single object for
processing.

. The Command pattern allows for having well defined command interfaces that are implemented by the object that provides the
processing for the client requests packaged as commands.
Command design pattern provides a convenient way to store and execute an "Undo" function.

. Command decouples the object that invokes the operation from the one that knows how to perform it.
Commands can be manipulated and extended like any other object.

. Commands can be made into a composite command.

. Commands can be stored. Since a command encapsulates all the data for a given request, it can be created and initialized at one
point and applied at another.

Web Service Broker
Problem:

. You want to provide access to one or more services using XML and web protocols.
Forces:

. You want to reuse and expose existing services to clients.

. You want to monitor and potentially limit the usage of exposed services, based on your business requirements and system
resource usage.

. Your services must be exposed using open standards to enable integration of heterogeneous applications.
You want to bridge the gap between business requirements and existing service capabilities.

Solution:

. Use a Web Service Broker to expose and broker one or more services in your application to external clients as a Web Service
using XML and standard web protocols:

file:///ID|/workspace/wsd-guide/wsd-guide.html (159 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

<< Servlet>> 5 <<\Web Sewice>>|\—\1

B -
- i
- v
- -
- .

Client sends request | EndpointProcessor 1..n | WebServiceBroker | 3CCe55ES BusinessService

A v 1..n

P0OJOBroker SessionBean]AXBroker POJ0OJAXBroker

Consequences:

. Introduces a layer between client and service.
Existing remote Session Fagades need be refactored to support local access.
. Network performance may be impacted due to web protocols.
. Coordinates interactions among one or more services, aggregates responses and may demarcate and compensate transactions.

Describe alternatives for dealing with issues that impact the quality of service provided by a Web service and
methods to improve the system reliability, maintainability, security, and performance of a service.

1212

Describe how to handle the various types of return values, faults, errors, and exceptions that can occur during a
Web service interaction.

A Handl er class must implement the j avax. xml . r pc. handl er. Handl er interface:

package javax. xnl.rpc. handl er;

public interface Handl er {
bool ean handl eRequest (MessageCont ext cont ext);
bool ean handl eResponse(MessageCont ext context);
bool ean handl eFaul t (MessageCont ext context);
I

The handl eRequest , handl eResponse and handl eFaul t methods for a SOAP message handler get access to the SOAPMessage from the
SOAPMessageCont ext . The implementation of these methods can modify the SOAPMessage including the headers and body elements.

The handl eRequest method performs one of the following steps after performing handler specific processing of the request SOAP
message:

. Return true to indicate continued processing of the request handler chain. The Handl er Chai n takes the responsibility of invoking
the next entity. The next entity may be the next handler in the Handl er Chai n or if this handler is the last handler in the chain, the
next entity is the target service endpoint. The mechanism for dispatch or invocation of the target service endpoint depends on
whether the request Handl er Chai n is on the client side or service endpoint side.

Return f al se to indicate blocking of the request handler chain. In this case, further processing of the request handler chain is
blocked and the target service endpoint is not dispatched. The JAX-RPC runtime system takes the responsibility of invoking the
response handler chain next with the appropriate SOAPMessageCont ext . The Handl er implementation class has the responsibility
of setting the response SOAP message in the handl eRequest method and perform additional processing in the handl eResponse
method. In the default processing model, the response handler chain starts processing from the same Handl er instance (that
returned f al se) and goes backward in the execution sequence.

. Throw the j avax. xm . rpc. soap. SOAPFaul t Excepti on to indicate a SOAP fault. The Handl er implementation class has the
responsibility of setting the SOAP fault in the SOAP message in either handl eRequest and/or handl eFaul t method. If
SOAPFaul t Excepti on is thrown by a server-side request handler's handl eRequest method, the Handl er Chai n terminates the
further processing of the request handlers in this handler chain and invokes the handl eFaul t method on the Handl er Chai n with
the SOAP message context. Next, the Handl er Chai n invokes the handl eFaul t method on handlers registered in the handler
chain, beginning with the Handl er instance that threw the exception and going backward in execution. The client-side request
handler's handl eRequest method should not throw the SOAPFaul t Except i on. Refer to the SOAP specification for details on the
various SOAP f aul t code values and corresponding specification.

file:///D|/workspace/wsd-guide/wsd-guide.html (160 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

. Throw the JAXRPCExcept i on or any other Runt i neExcepti on for any handler specific runtime error. If JAXRPCExcepti on is thrown
by a handl eRequest method, the Handl er Chai n terminates the further processing of this handler chain. On the server side, the
Handl er Chai n generates a SOAP fault that indicates that the message could not be processed for reasons not directly attributable
to the contents of the message itself but rather to a runtime error during the processing of the message. Refer to the SOAP
specification for details on the various SOAP f aul t code values. On the client side, the JAXRPCExcept i on or runtime exception is
propagated to the client code as a Renot eExcepti on or its subtype.

The handl eResponse method performs the processing of the SOAP response message. It does one of the following steps after
performing its handler specific processing of the SOAP message:

. Return true to indicate continued processing of the response handler chain. The Handl er Chai n invokes the handl eResponse
method on the next Handl er in the handler chain.

Return f al se to indicate blocking of the response handler chain. In this case, no other response handlers in the handler chain are
invoked. On the service endpoint side, this may be useful if response handler chooses to issue a response directly without
requiring other response handlers to be invoked.

. Throw the JAXRPCExcept i on or any other Runt i neExcepti on for any handler specific runtime error. If JAXRPCExcept i on is thrown
by the handl eResponse method, the Handl er Chai n terminates the further processing of this handler chain. On the server side,
the Handl er Chai n generates a SOAP fault that indicates that the message could not be processed for reasons not directly
attributable to the contents of the message itself but rather to a runtime error during the processing of the message. On the client
side, the JAXRPCExcept i on or runtime exception is propagated to the client code as a Renpt eExcept i on or its subtype.

The handl eFaul t method performs the SOAP fault related processing. The JAX-RPC runtime system should invoke the handl eFaul t
method if a SOAP fault needs to be processed by either client-side or server-side handlers. The handl eFaul t method does one of the
following steps after performing handler specific processing of the SOAP fault:

. Return true to indicate continued processing of the fault handlers in the handler chain. The Handl er Chai n invokes the
handl eFaul t method on the next Handl er in the handler chain.

Return f al se to indicate blocking of the fault processing in the handler chain. In this case, no other handlers in the handler chain
are invoked. The JAX-RPC runtime system takes the further responsibility of processing the SOAP message.

. Throw JAXRPCExcepti on or any other Runti meExcepti on for any handler specific runtime error. If JAXRPCExcept i on is thrown by
the handl eFaul t method, the Handl er Chai n terminates the further processing of this handler chain. On the server side, the
Handl er Chai n generates a SOAP fault that indicates that the message could not be processed for reasons not directly attributable
to the contents of the message itself but rather to a runtime error during the processing of the message. On the client side, the
JAXRPCExcept i on or runtime exception is propagated to the client code as a Renot eExcept i on or its subtype.

Please note that when a JAXRPCExcepti on or Runti mneExcept i on raised on the server is converted to a SOAP fault for the purpose of
being transmitted to the client, there are no guarantees that any of the information it contains will be preserved.

The following shows an example of the SOAP fault processing. In this case, the request handler Handl er _2 on the server side throws a
SOAPFaul t Excepti on in the handl eRequest method:

Handl er _1. handl eRequest

Handl er _2. handl eRequest -> throws SOAPFaul t Excepti on
Handl er _2. handl eFaul t

Handl er _1. handl eFaul t

R

Describe the role that Web services play when integrating data, application functions, or business processes in a
J2EE application.

1212
Describe how to design a stateless Web service that exposes the functionality of a stateful business process.
1212

Chapter 11. Endpoint Design and Architecture

Given a scenario, design Web service applications using information models that are either procedure-style or
document-style.

Choosing Between an RPC-Style (remote procedure call) and a Message-Style (document-style) Web Service.

RPC-style Web services are interface driven, which means that the business methods of the underlying stateless session EJB determine
how the Web service works. When clients invoke the Web service, they send parameter values to the Web service, which executes the
corresponding methods and sends back the return values. The relationship is synchronous, which means that the client waits for a
response from the Web service before it continues with the remainder of its application. Create an RPC-style Web service if your
application has the following characteristics:

. The client invoking the Web service needs an immediate response.

. The client and Web service work in a back-and-forth, conversational way.
The behavior of the Web service can be expressed as an interface.

. The Web service is process-oriented rather than data-oriented.

file:///ID|/workspace/wsd-guide/wsd-guide.html (161 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Examples of RPC-style Web services include providing the current weather conditions in a particular location; returning the current price
for a given stock; or checking the credit rating of a potential trading partner prior to the completion of a business transaction. In each
case the information is returned immediately, implying a synchronous relationship between the client and the Web service.

RPC is essentially a Remote Procedure Call in which the client sends a SOAP request to execute an operation on the Web Service. The
SOAP request contains the name of method to be executed and the parameter it takes. The server running the Web Service converts this
request to appropriate objects (Java method call, EJB method call etc with parameters of defined type), executes the operation and
sends the response as SOAP message to client. At the client side, this response is used to form appropriate objects and return the
required information (output) to the client. RPC-style Web Services are tightly coupled because the sending parameters and return
values are as described in WSDL (Web Service Description Language) file and are wrapped in the SOAP body. Following is an example
SOAP Body of RPC-style Web Service, which invokes Get St ockQuot e method with input parameter "ORCL":

<SQAP- ENV: Envel ope. .. >
<SOAP- ENV: Body>
<m Get St ockQuot e xm ns: m="http://hello">
<m Synbol >ORCL</ m Synbol >
</ m Get St ockQuot e>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

RPC-style Web Services follow call/response semantics, and hence they are synchronous, which means that the client sends the request
and waits for the response till the request is processed completely.

You should create a message-style (document-style) Web service if your application has the following characteristics:

. The client has an asynchronous relationship with the Web service, or in other words, the client does not expect an immediate
response.
. The Web service is data-oriented rather than process-oriented.

Examples of message-style Web services include processing a purchase order; accepting a request for new DSL home service; or
responding to a request for quote order from a customer. In each case, the client sends an entire document, such as purchase order, to
the Web service and assumes that the Web service is processing it in some way, but the client does not require an answer right away or
even at all. If your Web service will work in this asynchronous, document-driven manner, then you should consider designing it as a
message-style Web service. NOTE: Document-Style web servives can use both one-way (non-blocking) calls and two-way (request-
response) calls, but preferrable choice will be one-way calls.

Document-Style Web Service are loosely coupled and the request/response are in the form of XML documents. The client sends the
parameter to the Web Service as XML document, instead of discrete set of parameter values. The Web Service processes the document,
executes the operation and constructs & sends the response to the client as an XML document. There is no direct mapping between the
server objects (parameters, method calls etc) and the values in XML documents. The application has to take care of mapping the XML
data values. The SOAP Body of a Document-Style carries one or more XML documents, within its body. The protocol places no constraint
on how that document needs to be structured, which is totally handled at the application level. Document-Style Web Service follows
asynchronous processing. Following is an example SOAP body for Document-Style Web Service:

<SOAP- ENV: Envel ope ... >
<SOAP- ENV: Body>
<St ockQuot eRequest synbol =" | BA- USA"/ >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

The parameters of the methods which are to be exposed by the document style Web Service should be of type XML el erent only. The
return type of the method can be either an XML el enent or voi d.

The Simple Object Access Protocol (SOAP) offers two messaging styles: RPC (Remote Procedure Call) and document style. One is for
creating tightly coupled, inter-object style interfaces for Web services components; the other is for developing loosely coupled,
application-to-application and system-to-system interfaces.

RPC-Style

An RPC is a way for an application running in one execution thread on a system to call a procedure belonging to another application
running in a different execution thread on the same or a different system. RPC interfaces are based on a request-response model where
one program calls, or requests a service of, another across a tightly coupled interface. In Web services applications, one service acts as
a client, requesting a service; the other as a server, responding to that request. RPC interfaces have two parts: the call-level interface
seen by the two applications, and the underlying protocol for moving data from one application to the other. NOTE, it may be not only
request-response (two-way) RPC call, but also one-way RPC call (but more often it is used with two-way calls).

The call-level interface to an RPC procedure looks just like any other method call in the programming language being used. It consists of
a method name and a parameter list. The parameter list is made up of the variables passed to the called procedure and those returned

file:///D|/workspace/wsd-guide/wsd-guide.html (162 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

as part of its response.

For Web services, SOAP defines the wiring between the calling and called procedures. At the SOAP level, the RPC interface appears as a
series of highly structured XML messages moving between the client and the server where the Body of each SOAP message contains an
XML representation of the call or return stack:

<env: Envel ope xm ns: env="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<env: Body>
<sm sonmeMet hod xm ns: sm="http://ww. xyz. conl sni' >
<sonePar ans>
<i tenm>100</itenr
<i tem>200</ it en>
</ sonePar ans>
</ sm someMet hod>
</ env: Body>
</ env: Envel ope>

The transformation from call-level interface to XML and back occurs through the magic of two processes: marshaling and serialization.

1. The process begins with the client calling a method implemented as a remote procedure. The client actually calls a proxy stub that
acts as a surrogate for the real procedure. The proxy stub presents the same external interface to the caller as would the real
procedure, but instead of implementing the procedure's functionality, implements the processes necessary for preparing and
transporting data across the interface.

2. The proxy stub gathers the parameters it receives through its parameter list into a standard form, in this case, into a SOAP
message, through a process called marshaling.

3. The proxy stub encodes the parameters as appropriate during the marshaling process to ensure the recipient can correctly
interpret their values. Encoding may be as simple as identifying the correct structure and data type as attributes on the XML tag
enclosing the parameter's value or as complex as converting the content to a standard format such as Base64. The final product
of the marshaling process is a SOAP message representation of the call stack.

4. The proxy stub serializes the SOAP message across the transport layer to the server. Serialization involves converting the SOAP
message into a TCP/IP buffer stream and transporting that buffer stream between the client and the server.

The server goes through the reverse process to extract the information it needs. A listener service on the server deserializes the
transport stream and calls a proxy stub on the server that unmarshals the parameters, decodes and binds them to internal variables and
data structures, and invokes the called procedure. The listener process may be, for example, a J2EE servlet, JSP (JavaServer Page), or
Microsoft ASP (Active Server Page). The client and server reverse roles and the inverse process occurs to return the server's response to
the client.

Document-Style

The difference between RPC-Style and Document-Style is primarily in the control you have over the marshaling process. With RPC-style
messaging, standards govern that process. With document-style messaging, you make the decisions: you convert data from internal
variables into XML; you place the XML into the Body element of the encapsulating SOAP document; you determine the schema(s), if any,
for validating the document's structure; and you determine the encoding scheme, if any, for interpreting data item values. The SOAP
document simply becomes a wrapper containing whatever content you decide. For example, the SOAP document shown in following
example contains an XML namespace reference, http: // www. xyz. conf geneal ogy, that presumably includes all the information a
receiving program needs for validating the message's structure and content, and for correctly interpreting data values:

<env: Envel ope xm ns: env="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<env: Body>
<xyz:fam |y xm ns: xyz="http://ww. xyz. conl geneal ogy" >
<par ent s>
<f at her age="29">M kal ai </f at her >
<nmot her age="29">Vol ha</ not her >
</ par ent s>
<chi | dren>

</ chi | dren>
</xyz:fam |y>
</ env: Body>
</ env: Envel ope>

If you compare the steps involved in typical document-style message exchange process with those involved in processing an RPC-style
message, you will notice they are essentially parallel processes:

1. The SOAP client uses an Extensible Stylesheet Language Transformation (XSLT) and the DOM parser, or some other means, to
create an XML document.
2. The SOAP client places this XML document into the Body of a SOAP message.

file:///D|/workspace/wsd-guide/wsd-guide.html (163 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

3. The SOAP client optionally includes a namespace reference in the message that other applications can use for validating the
encapsulated document's format and content. The namespace reference may be included as an attribute either on one of the
SOAP elements or on the XML document's root element. If the document does not include a namespace reference, the client and
server must agree on some other scheme for validating and interpreting the document's contents.

4. The SOAP client serializes the message to the SOAP server across either an HTTP or SMTP bound interface.

The SOAP server reverses the process, potentially using a different XSLT, to validate, extract, and bind the information it needs from the
XML document to its own internal variables. The roles reverse and the two follow inverse processes for returning and accessing any
response values. The rules guiding the marshaling process are the primary difference between this process and that for RPC-style
messages. With document-style, you as the SOAP client's author create those rules.

RPC-style messaging maps to the object-oriented, component-technology space. It is an alternative to other component technologies
such as DCOM and CORBA where component models are built around programmable interfaces and languages such as Java and C#. RPC-
style messaging's strength in this space lies in its platform independence. It offers a standards-based, platform-independent component
technology, implemented over standard Internet protocols. One of the benefits of this style's XML layer is that clients and servers can
use different programming languages, or technologies, to implement their respective side of the interface, which means one side can
choose one set of technologies, such as J2EE's JAX-RPC, while the other chooses a completely different set, such as .NET's C#. RPC-style
messaging's standards heritage can be an important consideration in hybrid environments (one using multiple technologies such as J2EE
and .NET) and can provide a transition path between different technologies.

RPC-Style messaging's weaknesses
. Strong coupling

If you change the number, order, or data types of the parameters to the call-level interface, you must make the change on both
sides of the interface.
Synchronicity

Most programming languages assume synchronous method calls: the calling program normally waits for the called program to
execute and return any results before continuing. Web services are asynchronous by nature and, in comparison to technologies
such as DCOM and CORBA, long running. You may want to take advantage of Web services' asynchronous nature to avoid the
user having to wait for calls to complete by developing asynchronous RPC calls, but that adds another level of complexity to your
application. Some tools hide this complexity using callbacks, or other techniques, to enable processing overlap between the
request and the response. Check to see if the tools you' re using let you choose between synchronous and asynchronous RPC
calls.

. Marshaling and serialization overhead

Marshaling and serializing XML is more expensive than marshaling and serializing a binary data stream. With XML, at least one
side of the interface, and possibly both, involves some parsing in order to move data between internal variables and the XML
document. There is also the cost of moving encoded text, which can be larger in size than its binary equivalent, across the
interface.

The coupling and synchronicity issues are common to RPC-based component technologies. So they are really not discriminators when
making comparisons between these technologies. The marshaling and serialization overhead is greater for RPC-style messaging and
places this messaging style at a relative disadvantage. However, with today's high-speed processors and networks, performance is
generally not an issue.

Document-style messaging is clearly an option in any situation where an XML document is one of the interface parameters. It is ideal for
passing complex business documents, such as invoices, receipts, customer orders, or shipping manifests. Document-style messaging
uses an XML document and a stylesheet to specify the content and structure of the information exchanged across the interface, making
it an obvious choice in situations where a document's workflow involves a series of services where each service processes a subset of the
information within the document. Each service can use an XSLT to validate, extract, and transform only the elements it needs from the
larger XML document; with the exception of those elements, the service is insensitive to changes in other parts of the document. The
XSLT insulates the service from changes in the number, order, or type of data elements being exchanged. As long as the service creating
the document maintains backwards compatibility, it can add or rearrange the elements it places into a document without affecting other
services. Those services can simply ignore any additional data. Document-style messaging is also agnostic on the synchronicity of the
interface; it works equally well for both synchronous and asynchronous interfaces.

Document-style messaging's weaknesses
. No standard service identification mechanism

With document-style messaging, the client and server must agree on a service identification mechanism: a way for a document'’s
recipient to determine which service(s) need to process that document. SOAP header entries offer one option; you can include
information in the document's header that helps identify the service(s) needed. WS-Routing makes just such a proposal. Another
option is to name elements in the Body of the message for the services that need to process the payload the elements contain.
You might ask how that differs from schema-based RPC-style messaging. You would be right in assuming there is little or no
difference except possibly in terms of the number of "calls" that can be made per message. A third option is to perform either
structure or content analysis as part of a service selection process in order to identify the services needed to process the
document.

. Marshaling and serialization overhead

Document-style messaging suffers from the same drawbacks as RPC-style messaging in this area. However, the problem may be
more severe with document-style messaging. Document-style messaging incurs overhead in three areas: in using DOM, or
another technique, to build XML documents; in using DOM, or SAX, to parse those documents in order to extract data values; and
in mapping between extracted data values and internal program variables. Tools generating equivalent RPC-style interfaces
optimize these transformations. You may have trouble achieving the same level of efficiency in your applications using standard

file:///ID|/workspace/wsd-guide/wsd-guide.html (164 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

tools.

There are two compelling reasons to use document-style messaging. One is to gain the independence it provides. Its strength lies in
decoupling interfaces between services to the point that they can change completely independently of one another. The other is that
document-style messaging puts the full power of XML for structuring and encoding information at your disposal. The latter is one reason
many consider document-style superior to RPC-style messaging.

RPC-style messaging's strength is as a bridging component technology. It is a good option for creating new components and for creating
interfaces between Web services and existing components - you simply wrap existing components with RPC-style Web services
interfaces. RPC-style messaging is also an excellent component standard in situations where you are using multiple technologies, such as
J2EE and .NET, and want to develop sharable components.

Document-style messaging's strengths are in situations where an XML document is part of the data being passed across the interface,
where you want to leverage the full power of XML and XSL, and in instances where you want to minimize coupling between services
forming an interface, such as in application-to-application and system-to-system interfaces.

WSDL Example for RPC-Style:

NOTE: part element has attribute t ype.

RPC-Literal SOAP message for this request:

WSDL Example for Document-Style:

NOTE: part element has attribute el enent with value of globally declared element.

Document-Literal SOAP message:

file:///D|/workspace/wsd-guide/wsd-guide.html (165 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

Describe the function of the service interaction and processing layers in a Web service.

See blueprints.

Describe the tasks performed by each phase of an XML-based, document oriented, Web service application,
including the consumption, business processing, and production phases.

1212

Design a Web service for an asynchronous, document-style process and describe how to refactor a Web service
from a synchronous to an asynchronous model.

1. Refactor Server's Web Service to one-way (asynchronous) from two-way (synchronous).

2. Add some identification information in SOAP message (can be implemented using header with unique | D value).

3. Deploy new Web Service on the Client and allow Server call back client when Server processed incoming message and ready to
return results to caller (Client).

Describe how the characteristics, such as resource utilization, conversational capabilities, and operational modes,
of the various types of Web service clients impact the design of a Web service or determine the type of client that
might interact with a particular service.

1212

Appendixes

Appendix A. First Appendix
SAAJ API

SAAJ Interfaces

file:///D|/workspace/wsd-guide/wsd-guide.html (166 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

package j avax.xnl . soap;
public interface Text extends Node, org.w3c.dom Text {

public abstract bool ean i sComrent();

package j avax. xml . soap;
inmport java.util.lterator;
public interface SOAPEl enent extends Node, org.w3c.dom El enent {
publ i c abstract SOAPEl enent addChil dEl ement (Nanme nane) throws SOAPExcepti on;

publ i c abstract SOAPEl enent addChil dEl ement (String | ocal Nane)
t hrows SOAPExcepti on;

publ i c abstract SOAPEl enent addChil dEl ement (String | ocal Nane, String prefix)
t hr ows SOAPExcepti on;

publ i c abstract SOAPEl enent addChil dEl enent (
String | ocal Nane, String prefix, String uri) throws SOAPExcepti on;

publi c abstract SOAPEl enent addChil dEl ement (SOAPElI ement el enment)
t hrows SOAPExcepti on;

public abstract SOAPEl enent addText Node(String text) throws SOAPExcepti on;

publi c abstract SOAPEl enent addAttribute(Nane nane, String val ue)
t hrows SOAPExcepti on;

publ i c abstract SOAPEl enent addNanespaceDecl arati on(
String prefix, String uri) throws SOAPExcepti on;

public abstract String getAttributeVal ue(Nane nane);

public abstract Iterator getAllAttributes();

public abstract String get NanespaceURI (String prefix);

public abstract Iterator getNamespacePrefixes();

public abstract Nanme get El ement Nane();

publi c abstract bool ean renoveAttri bute(Nane nane);

publ i c abstract bool ean renoveNanespaceDecl aration(String prefix);
public abstract Iterator getChildEl enments();

public abstract |terator getChil dEl ement s(Nanme nane);

public abstract void setEncodi ngStyle(String encodi ngStyl e)
t hrows SOAPExcepti on;

public abstract String getEncodi ngStyle();
public abstract void renpveContents();

public abstract |terator getVisibl eNanespacePrefixes();

package j avax. xnl . soap;
i mport org.w3c. dom Docunent ;
import java.util.Local e;
public interface SOAPBody extends SOAPElI enent {
public abstract SOAPFault addFault() throws SOAPExcepti on;

publ i c abstract bool ean hasFaul t();

file:///D|/workspace/wsd-guide/wsd-guide.html (167 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

public abstract SOAPFault getFault();

publ i c abstract SOAPBodyEl enent addBodyEl enent (Name nane)
t hrows SOAPExcepti on;

public abstract SOAPFault addFaul t (Nane faul t Code,
String faul tString,
Local e | ocal e) throws SOAPExcepti on;

public abstract SOAPFault addFaul t (Name faultCode, String faultString) throws
SOAPExcept i on;

public abstract SOAPBodyEl ement addDocunent (Docunment docunent) throws SOAPExcepti on;

package j avax. xml . soap;

public interface SOAPBodyEl ement extends SOAPEl ement {}

package j avax.xnl . soap;

import java.util.Local e;

public interface SOAPFaul t extends SOAPBodyEl ement {
public abstract void setFault Code(String faultCode) throws SOAPExcepti on;
public abstract String getFaul t Code();
public abstract void setFaultActor(String faultActor) throws SOAPExcepti on;
public abstract String getFaultActor();

public abstract void setFaultString(String faultString)
t hrows SOAPExcepti on;

public abstract String getFaultString();

public abstract Detail getDetail ();

public abstract Detail addDetail () throws SOAPExcepti on;

public abstract void set Faul t Code(Name nane) throws SOAPExcepti on;
publ i c abstract Nane get Faul t CodeAsNane() ;

public abstract void setFaultString(String faultString, Locale |ocale) throws
SQAPExcept i on;

public abstract Local e getFaultStringLocal e();

package j avax. xnl . soap;
public interface SOAPEnvel ope extends SOAPEl enent {

public abstract Name createName(String |ocal Nane, String prefix, String uri)
t hrows SOAPExcepti on;

public abstract Name createNane(String |ocal Name) throws SOAPExcepti on;
publ i c abstract SOAPHeader get Header() throws SOAPExcepti on;

publ i c abstract SOAPBody get Body() throws SOAPExcepti on;

publ i c abstract SOAPHeader addHeader () throws SOAPExcepti on;

publ i c abstract SOAPBody addBody() throws SOAPExcepti on;

file:///D|/workspace/wsd-guide/wsd-guide.html (168 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

package j avax.xnl . soap;
import java.util.lterator;
public interface SOAPHeader extends SOAPEl enent {

publi c abstract SOAPHeader El ement addHeader El ement (Nane nane)
t hrows SOAPExcepti on;

/| does not detach headers
public abstract Iterator exam neHeaderEl enents(String actor);

/| detaches headers
public abstract Iterator extractHeaderEl enents(String actor);

public abstract |terator exam neMistUnder st andHeader El ements(String actor);
public abstract Iterator exam neAl | Header El ement s() ;

public abstract |terator extractAl | HeaderEl enents();

package j avax. xnl . soap;
public interface SOAPHeader El ement extends SOAPEl ement {
public abstract void setActor(String actorURl);
public abstract String getActor();
public abstract void set Must Under st and(bool ean nust Under st and) ;

publi ¢ abstract bool ean get Must Under st and();

SAAJ API Classes.

package j avax. xml . soap;

import java.io.|OException;
i mport java.io.|nputStream

public abstract class MessageFactory {
prot ected MessageFactory() {}

public static MessageFactory new nstance() throws SQAPException {
}

public abstract SOAPMessage creat eMessage() throws SOAPExcepti on;
publi c abstract SOAPMessage creat eMessage(

M neHeader s m neheaders, |nputStream i nputstreamn
throws | OException, SOAPExcepti on;

package j avax. xnl . soap;

i mport javax.activation. Dat aHandl er;
i mport java.io.| OException;

i mport java.io.Qutput Stream

inmport java.util.lterator;

public abstract class SOAPMessage {

publ i c SOAPMessage() {}

public abstract String getContentDescription();

public abstract void set ContentDescription(String description);
public abstract SOAPPart get SOAPPart () ;

public abstract void renpveAl | Attachnents();

file:///D|/workspace/wsd-guide/wsd-guide.html (169 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

public abstract int countAttachments();

public abstract Iterator getAttachments();

public abstract Iterator getAttachnments(M neHeaders headers);

public abstract void addAttachnment Part (Attachment Part attachmentpart);

public abstract AttachmentPart createAttachmentPart();

public Attachnment Part createAttachnent Part (Dat aHandl er datahandler) { ... }
public abstract M neHeaders get M neHeaders();

public AttachnentPart createAttachment Part (Object content, String contentType) {
}

public abstract void saveChanges() throws SOAPExcepti on;

public abstract bool ean saveRequired();

public abstract void witeTo(QutputStream out) throws SOAPException, | OException;
publ i ¢ SOAPBody get SOAPBody() throws SOAPException {

}

publ i ¢ SOAPHeader get SOAPHeader () throws SOAPException {

}

public void setProperty(String property, Cbject value) throws SOAPException {

}

public Object getProperty(String property) throws SQAPException {

}

package j avax.xnl . soap;

i mport javax.xm .transform Source;
inmport java.util.lterator;

public abstract class SOAPPart inplenents org.w3c.dom Docunent {

public SOAPPart () {}
publ i c abstract SOAPEnvel ope get Envel ope() throws SOAPExcepti on;
public String getContentld() {

}

public String getContentlLocation() {

}

public void setContentld(String contentld) {

}

public void setContentlLocation(String contentlLocation) {

}

public abstract void renoveM neHeader (String header);

public abstract void renpveAl | M neHeaders();

public abstract String[] getM neHeader(String nane);

public abstract void set M neHeader (String name, String val ue);
public abstract void addM neHeader (String nanme, String val ue);
public abstract Iterator getAl |l M neHeaders();

public abstract Iterator getMatchi ngM neHeaders(String nanes[]);
public abstract |terator get NonMatchi ngM nmeHeaders(String nanes[]);
public abstract void set Content(Source source) throws SOAPExcepti on;
public abstract Source getContent() throws SOAPExcepti on;

package j avax. xnl . soap;
i mport java.util.Locale;
public interface SOAPFault extends SQAPBodyEl enent {

public abstract void setFault Code(String faultCode) throws SOAPExcepti on;
public abstract String getFaul t Code();

public abstract void setFaultActor(String faultActor) throws SOAPExcepti on;
public abstract String getFaultActor();

public abstract void setFaul tString(String faultString)

file:///D|/workspace/wsd-guide/wsd-guide.html (170 of 171) [14.03.2006 14:39:45]

SCDJWS Study Guide

public abstract String getFaultString();

public abstract Detail getDetail ();

public abstract Detail addDetail () throws SOAPExcepti on;

public abstract void set Faul t Code(Name nane) throws SOAPExcepti on;

publi c abstract Nane get Faul t CodeAsNane() ;

public abstract void setFaul tString(String faultString, Locale |ocale) throws
SQAPExcept i on;

public abstract Local e getFaul tStringlLocal e();
}

Second Section

sdsds

Third Section

sdsds

Bibliography

[BP-1.0] Basic Profile Version 1.0 - Final Specification (http://www.ws-i.org/Profiles/BasicProfile-1.0.html).

[SOAP-1.1] Simple Object Access Protocol (SOAP) 1.1 (http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508).
[SOAP-1.1-Attachments] SOAP Messages with Attachments (http://www.w3.0rg/TR/SOAP-attachments).

[WSDL-1.1] Web Services Description Language (WSDL) 1.1 (http://www.w3.0rg/TR/wsdl).

[UDDI-2.0-DS] UDDI Version 2.03 Data Structure Reference (http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm).
[UDDI-2.0-API] UDDI Version 2.04 API Specification (http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm).
[XML-DSIG] XML Digital Signature (http://www.w3.org/Signature).

[XML-SIG] XML-Signature Syntax and Processing (http://www.w3.0rg/TR/2002/REC-xmldsig-core-20020212).

[XML-ENCR] XML Encryption Syntax and Processing (http://www.w3.0rg/TR/2002/REC-xmlenc-core-20021210).

[SAML] SAML (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security).

[XACML] XACML (http://www.0asis-open.org/committees/tc_home.php?wg_abbrev=xacml).

[WS-SEC] Web Services Security (WS-Security) (http://www-106.ibm.com/developerworks/webservices/library/ws-secure/).
[J2EE-1.4] J2EE 1.4 Specification - Final Release (http://java.sun.com/j2ee/1.4/download.html).

[JSR-921] JSR 921: Implementing Enterprise Web Services 1.1 (http://jcp.org/en/jsr/detail?id=921).

file://ID|/workspace/wsd-guide/wsd-guide.html (171 of 171) [14.03.2006 14:39:45]

http://extmedia.com/
http://boot.by/
http://click.hotlog.ru/?181828
http://click.hotlog.ru/?181828
http://java.boot.by/wcd-guide
http://java.boot.by/bcd-guide
http://java.boot.by/wsd-quiz
http://java.boot.by/icad-guide
http://java.boot.by/scjp-tiger
http://java.boot.by/magnet-mocker
http://java.boot.by/ibm-287
http://java.boot.by/ibm-255

	Local Disk
	SCDJWS Study Guide

