This week's book giveaway is in the Servlets forum.
We're giving away four copies of Murach's Java Servlets and JSP and have Joel Murach on-line!
See this thread for details.
The moose likes Programming Diversions and the fly likes Problem 382 of Euler project Big Moose Saloon
  Search | Java FAQ | Recent Topics | Flagged Topics | Hot Topics | Zero Replies
Register / Login


Win a copy of Murach's Java Servlets and JSP this week in the Servlets forum!
JavaRanch » Java Forums » Other » Programming Diversions
Bookmark "Problem 382 of Euler project" Watch "Problem 382 of Euler project" New topic
Author

Problem 382 of Euler project

ankur rathi
Ranch Hand

Joined: Oct 11, 2004
Posts: 3830
Hi,

I am trying to solve Problem 382 of Euler project - http://projecteuler.net/problem=382
One of the steps to solve this problem (with my logic) is, if you get an array of some numbers, you've to generate unique combinations from those numbers, minimum 3 numbers in a set. For example, if an array given is: 1 2 3 4 6.

The combinations will be:

1 2 3 4 6
2 3 4 6
3 4 6
2 4 6
2 3 6
2 3 4
1 3 4 6
1 4 6
1 3 6
1 3 4
1 2 4 6
1 2 6
1 2 4
1 2 3 6
1 2 3
1 2 3 4

I could write algorithm for it but it's not efficient. It takes hours to generate combinations from an array of 25 numbers. Here is my code:



I am sure there could be many improvements in it or this algorithm whole could be discarded...

Please suggest...

Thanks.

ankur rathi
Ranch Hand

Joined: Oct 11, 2004
Posts: 3830
Also placing problem here for those who don't want to register...


A polygon is a flat shape consisting of straight line segments that are joined to form a closed chain or circuit. A polygon consists of at least three sides and does not self-intersect.

A set S of positive numbers is said to generate a polygon P if:

no two sides of P are the same length,
the length of every side of P is in S, and
S contains no other value.

For example:
The set {3, 4, 5} generates a polygon with sides 3, 4, and 5 (a triangle).
The set {6, 9, 11, 24} generates a polygon with sides 6, 9, 11, and 24 (a quadrilateral).
The sets {1, 2, 3} and {2, 3, 4, 9} do not generate any polygon at all.

Consider the sequence s, defined as follows:

s1 = 1, s2 = 2, s3 = 3
sn = sn-1 + sn-3 for n > 3.

Let Un be the set {s1, s2, ..., sn}. For example, U10 = {1, 2, 3, 4, 6, 9, 13, 19, 28, 41}.
Let f(n) be the number of subsets of Un which generate at least one polygon.
For example, f(5) = 7, f(10) = 501 and f(25) = 18635853.

Find the last 9 digits of f(1018).

 
I agree. Here's the link: http://aspose.com/file-tools
 
subject: Problem 382 of Euler project
 
Similar Threads
Project Euler #17
Project Euler Problem 25
project euler
Need help with Project Euler algorithm
Project Euler : Problem 23